Stavros_ribo
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σωστά, μόνο στο 4ο θέμα το Γ για α=1 το όριο βγαίνει 2.
Δεν το πολυ τσεκαρα επρεπε και να φυγω ευχαριστω :no1:
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
χρηστοσ17
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
δινεται η εξισωση χ^4 +αχ^3+3βχ^2+γχ+δ=0 που εχει 4 ριζες πραγματικες και ανισες,(α,β,γ,δ ανηκουν R )
α)Ν.Δ.Ο. υπαρχει μοναδικο χο,ξ ανηκουν στο R ετσι ωστε η εξισωση φ(ξ)=1/2ξ-(ριζα2)χο να εχει λυση
β) ΝΔΟ υπαρχει μοναδικο ω ανηκει στο R ετσι ωστε η συναρτηση f(χ)=-α^2χ^6+α^2χ^3-8βχ+16χο^2 να εχει λυση
-----------------------------------------
https://ischool.e-steki.gr/showthread.php?t=40544&page=52
Εδώ σου λέω ότι ο g!orgos θα είχε δίκιο και θα μπορούσε να το στηρίξει τον ισχυρισμό του με το Θεώρημα Darboux και όχι να πει εφόσοντότε η f διατηρεί πρόσημο.
Ο σωστός τρόπος:
Έστω ότι δεν ισχύει, δηλαδή η παράγωγος συνάρτησηδεν είναι ούτε αυστηρά θετική ούτε αυστηρά αρνητική.Τότε υπάρχουν
τέτοια ώστε
σύμφωνα όμως με το θεώρημα Darboux υπάρχει
τέτοιο ώστε
, άτοπο απ' την υπόθεση.![]()
Δηλαδή ανγια κάθε
(όπου
το διάστημα στο οποίο ορίζεται η
) η παράγωγος συνάρτηση
διατηρεί σταθερό πρόσημo ανεξαρτήτως συνέχειας!![]()
Eλπίζω να κατάλαβες το συγκεκριμένο θεώρημα με τόσα post που έκανα![]()
σορι δεν εχω διαβασει την ασκηση αλλα αν μια συναρτηση διατηρη σταθερο προσημο δεν ισχυει παντα οτι ειναι διαφορει του 0 ,αν καταλαβα καλα...
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
χρηστοσ17
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
σορι παιδια για την ασκηση την κοιταξα και νομιζω ειναι καλυτερα να την γραψω ετσιγεια σασ παιδια!!σας παραθετω μια ασκηση που εφτιαξα (ελπιζω να μην εχει λαθος)
δινεται η εξισωση χ^4 +αχ^3+3βχ^2+γχ+δ=0 που εχει 4 ριζες πραγματικες και ανισες,(α,β,γ,δ ανηκουν R )
α)Ν.Δ.Ο. υπαρχει μοναδικο χο,ξ ανηκουν στο R ετσι ωστε η εξισωση φ(ξ)=1/2ξ-(ριζα2)χο να εχει λυση
β) ΝΔΟ υπαρχει τουλαχιστον ενα ω ανηκει στο R ετσι ωστε η συναρτηση f(χ)=-α^2χ^6+α^2χ^3-8βχ+16χο^2 να εχει λυση
-----------------------------------------
σορι δεν εχω διαβασει την ασκηση αλλα αν μια συναρτηση διατηρη σταθερο προσημο δεν ισχυει παντα οτι ειναι διαφορει του 0 ,αν καταλαβα καλα...
δινεται η εξισωση χ^4 +αχ^3+3βχ^2+γχ+δ=0 που εχει 4 ριζες πραγματικες και ανισες ρ1,ρ2,ρ3,ρ4(α,β,γ,δ ανηκουν R )
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,ξ ανηκουν στο (χ1,χ2)υποσυνολο του (ρ1,ρ2) κ' οπου χο η ριζα της 3 παραγωγου, ετσι ωστε η εξισωση φ(ξ)=1/2ξ-(ριζα2)χο να εχει πραγματικη λυση
β) νδο το σημειο Μ(χο,ξ) ειναι μοναδικο και να βρεθει η αποσταση του απο το 0(0,0) αν επιπλεον το Μ ανηκει στην ευθεια y=x
γ) ΝΔΟ υπαρχει τουλαχιστο ενα ω ανηκει στο R ετσι ωστε η συναρτηση f(χ)=-α^2χ^6+α^2χ^3-8βχ+16χο^2 να εχει πραγματικη λυση και επιπλεον β<0
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
σορι παιδια για την ασκηση την κοιταξα και νομιζω ειναι καλυτερα να την γραψω ετσι
δινεται η εξισωση χ^4 +αχ^3+3βχ^2+γχ+δ=0 που εχει 4 ριζες πραγματικες και ανισες ρ1,ρ2,ρ3,ρ4(α,β,γ,δ ανηκουν R )
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,ξ ανηκουν στο (χ1,χ2)υποσυνολο του (ρ1,ρ2) κ' οπου χο η ριζα της 3 παραγωγου, ετσι ωστε η εξισωση φ(ξ)=1/2ξ-(ριζα2)χο να εχει πραγματικη λυση
β) νδο το σημειο Μ(χο,ξ) ειναι μοναδικο και να βρεθει η αποσταση του απο το 0(0,0) αν επιπλεον το Μ ανηκει στην ευθεια y=x
γ) ΝΔΟ υπαρχει τουλαχιστο ενα ω ανηκει στο R ετσι ωστε η συναρτηση f(χ)=-α^2χ^6+α^2χ^3-8βχ+16χο^2 να εχει πραγματικη λυση
Δεν καταλαβαινω τιποτα με συγχωρεις γραψε σε λατεξ
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
χρηστοσ17
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
δεν ξερω να γραφω σε λατεχΔεν καταλαβαινω τιποτα με συγχωρεις γραψε σε λατεξ
![Κλάμα :'( :'(](https://www.e-steki.gr/images/smilies/cry.gif)
![Κλάμα :'( :'(](https://www.e-steki.gr/images/smilies/cry.gif)
![Κλάμα :'( :'(](https://www.e-steki.gr/images/smilies/cry.gif)
![Κλάμα :'( :'(](https://www.e-steki.gr/images/smilies/cry.gif)
-----------------------------------------
Δινεται η συναρτηση g(x)=
που εχει 4 ριζες πραγματικεσ και ανισες τις ρ1,ρ2,ρ3,ρ4 και (α,β,γ,δ
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,και ενα τουλαχιστον ξ,
β)Ν.Δ.Ο. το σημειο Μ(χο,ξ) ειναι μοναδικο, και να βρεθει η αποσταση του απο την αρχη των αξονων ,αν επιπλεον δινεται οτι το Μ
γ)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον ω
νομιζω κατι εκανα! γτ μου τα βγαζει ετσι???
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
δεν ξερω να γραφω σε λατεχ
-----------------------------------------
Δινεται η εξισωση ε:{χ}^{4}+α{χ}^{3}+3β{χ}^{2}+γχ+δ=0
που εχει 4 ριζες πραγματικεσ και ανισες τις ρ1,ρ2,ρ3,ρ4 και (α,β,γ,δ in R)
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,ξ in (ρ1,ρ4),οπου χο η ριζα τησ τριτης παραγωγου της εξισωσης (ε),ετσι ωστε η συναρτηση φ(ξ)=frac{1}{2} -sqrt{2} χο να εχει πραγματικη λυση
β)Ν.Δ.Ο. το σημειο Μ(χο,ξ) ειναι μοναδικο, και να βρεθει η αποσταση του απο την αρχη των αξονων ,αν επιπλεον δινεται οτι το Μin στην y=x
γ)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον ω in R ετσι ωστε η συναρτηση f(x)=-{α}^{2}{χ}^{6}+{α}^{2}{χ}^{3}-8βχ+16χο να εχει πραγματικη λυση ,αν επιπλεον δινεται οτι β<0
νομιζω κατι εκανα! γτ μου τα βγαζει ετσι???
Πρεπει ό,τι γραφεςις στο latex μολις τα περασεις στο κειμενο να τα βαλεις αναμεσα στις λεξεις [λατεξ] μπλα μπλα [/λατεξ]
ΣΗΜΕΙΩΣΗ: Τη λεξη λατεξ πρεπει να τι γραφεις στα αγγλικα
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
χρηστοσ17
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
ευχαριστω!!!!Πρεπει ό,τι γραφεςις στο latex μολις τα περασεις στο κειμενο να τα βαλεις αναμεσα στις λεξεις [λατεξ] μπλα μπλα [/λατεξ]
ΣΗΜΕΙΩΣΗ: Τη λεξη λατεξ πρεπει να τι γραφεις στα αγγλικα
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Spyros2309
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
δεν ξερω να γραφω σε λατεχ
-----------------------------------------
Δινεται η συναρτηση g(x)=+α
+3β
+γx+δ=0
που εχει 4 ριζες πραγματικεσ και ανισες τις ρ1,ρ2,ρ3,ρ4 και (α,β,γ,δR)
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,και ενα τουλαχιστον ξ,(ρ1,ρ4),οπου χο η ριζα τησ τριτης παραγωγου της εξισωσης g (g'''(xo)=0),ετσι ωστε η συναρτηση φ(ξ)=
ξ -
χο να εχει πραγματικη λυση
β)Ν.Δ.Ο. το σημειο Μ(χο,ξ) ειναι μοναδικο, και να βρεθει η αποσταση του απο την αρχη των αξονων ,αν επιπλεον δινεται οτι το Μστην y=x
γ)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον ωR ετσι ωστε η συναρτηση f(x)=-
![]()
+
![]()
-8βχ+16χο να εχει πραγματικη λυση ,αν επιπλεον δινεται οτι β<0
νομιζω κατι εκανα! γτ μου τα βγαζει ετσι???
Πρωτα απο ολα η φ(ξ) δεν ειναι συναρτηση ειναι μια τιμη της συναρτησης .... Επειτα δεν καταλαβαινω τι θες να πεις .Ποια η μεταβλητη της συναρτησης ? μηπως εννοεις
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
χρηστοσ17
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Την παρακατο ασκηση την εφτιαξα μονος μου γιαυτο δεν ξερω αν υπαρχει καποιο λαθος και θα ζητησω συγγνωμη απο τωρα.Πρωτα απο ολα η φ(ξ) δεν ειναι συναρτηση ειναι μια τιμη της συναρτησης .... Επειτα δεν καταλαβαινω τι θες να πεις .Ποια η μεταβλητη της συναρτησης ? μηπως εννοεις![]()
Δινεται η συναρτηση g(x)=
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,
β) Ν.Δ.Ο. το σημειο Μ(χο,k) ειναι μοναδικο και να βρεθει η αποσταση του απο το 0(0,0) αν επιπλεον δινεται οτι το Μ ανηκει στην ευθεια y=x
γ) Ν.Δ.Ο. υπαρχει τουλαχιστο ενα ω ανηκει στο R ετσι ωστε η συναρτηση f(χ)=
σορι για την βαβουρα !!και ευχαριστω για τισ παρατηρησεισ
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
jimmy007
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Την παρακατο ασκηση την εφτιαξα μονος μου γιαυτο δεν ξερω αν υπαρχει καποιο λαθος και θα ζητησω συγγνωμη απο τωρα.
Δινεται η συναρτηση g(x)=που εχει 4 ριζες πραγματικες και ανισες ρ1,ρ2,ρ3,ρ4(a,b,p,d
R )
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,(χ1,χ2)
(ρ1,ρ4) ,οπου χο η ριζα της τριτησ παραγωγου της g(x) (g'''(xo)=0)και ενα τουλαχιστον k
R, ετσι ωστε η συναρτηση φ(k)=
-
χο να εχει πραγματικη λυση
β) Ν.Δ.Ο. το σημειο Μ(χο,k) ειναι μοναδικο και να βρεθει η αποσταση του απο το 0(0,0) αν επιπλεον δινεται οτι το Μ ανηκει στην ευθεια y=x
γ) Ν.Δ.Ο. υπαρχει τουλαχιστο ενα ω ανηκει στο R ετσι ωστε η συναρτηση f(χ)=+16χο^2 να εχει πραγματικη λυση,αν επιπλεον δινεται οτι b<0
σορι για την βαβουρα !!και ευχαριστω για τισ παρατηρησεισ![]()
α) Παίρνεις 3 Rolle και καταλήγεις ότι υπάρχει xo στο (ρ1,ρ4) ώστε g"'(xo)=0. Για την εξίσωση με το k, προφανής ρίζα για k=2(ρίζα2)xo. Συνεχίζω σε λίγο με τα υπόλοιπα...
-----------------------------------------
β)Λόγω μονοτονίας της g''' και της φ τα k,xo μοναδικό. Επιπλέον k=xo άρα από το α. k=xo=0. Οπότε το M είναι η αρχή των αξόνων.
-----------------------------------------
Την παρακατο ασκηση την εφτιαξα μονος μου γιαυτο δεν ξερω αν υπαρχει καποιο λαθος και θα ζητησω συγγνωμη απο τωρα.
Δινεται η συναρτηση g(x)=που εχει 4 ριζες πραγματικες και ανισες ρ1,ρ2,ρ3,ρ4(a,b,p,d
R )
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,(χ1,χ2)
(ρ1,ρ4) ,οπου χο η ριζα της τριτησ παραγωγου της g(x) (g'''(xo)=0)και ενα τουλαχιστον k
R, ετσι ωστε η συναρτηση φ(k)=
-
χο να εχει πραγματικη λυση
β) Ν.Δ.Ο. το σημειο Μ(χο,k) ειναι μοναδικο και να βρεθει η αποσταση του απο το 0(0,0) αν επιπλεον δινεται οτι το Μ ανηκει στην ευθεια y=x
γ) Ν.Δ.Ο. υπαρχει τουλαχιστο ενα ω ανηκει στο R ετσι ωστε η συναρτηση f(χ)=+16χο^2 να εχει πραγματικη λυση,αν επιπλεον δινεται οτι b<0
σορι για την βαβουρα !!και ευχαριστω για τισ παρατηρησεισ![]()
Το ω είναι η ρίζα ή έχεις ξεχάσει κατι???
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
χρηστοσ17
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
α) Παίρνεις 3 Rolle και καταλήγεις ότι υπάρχει xo στο (ρ1,ρ4) ώστε g"'(xo)=0. Για την εξίσωση με το k, προφανής ρίζα για k=2(ρίζα2)xo. Συνεχίζω σε λίγο με τα υπόλοιπα...
-----------------------------------------
β)Λόγω μονοτονίας της g''' και της φ τα k,xo μοναδικό. Επιπλέον k=xo άρα από το α. k=xo=0. Οπότε το M είναι η αρχή των αξόνων.
-----------------------------------------
Το ω είναι η ρίζα ή έχεις ξεχάσει κατι???
το ω να ειναι ριζα τησ εξισωσης f ,επισης στο γ ερωτημα μπορει να δωθει οτι ισχυει το β ερωτημα αντι να δωθει b<0!δεν ξερω αν σε βοηθησα!εισαι πολυ κοντα προσπαθησε και αμα ειναι ανεβαζω την απαντηση
για το ερωτημα α να πω οτι το k
-----------------------------------------
μεσ την ριζα ειναι 2χο^2 -bτο ω να ειναι ριζα τησ εξισωσης f ,επισης στο γ ερωτημα μπορει να δωθει οτι ισχυει το β ερωτημα αντι να δωθει b<0!δεν ξερω αν σε βοηθησα!εισαι πολυ κοντα προσπαθησε και αμα ειναι ανεβαζω την απαντηση
για το ερωτημα α να πω οτι το k(2
xo+
-b}" />,2
xo-
-b}" />)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
forakos
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![](/proxy.php?image=http%3A%2F%2Fimg94.imageshack.us%2Fimg94%2F4448%2F122x.png&hash=9af0600c3692aa8d9d4799de057b1bd7)
-----------------------------------------
![](/proxy.php?image=http%3A%2F%2Fimg192.imageshack.us%2Fimg192%2F3663%2F28558914.png&hash=d5e1806d42997db1fbbad0e7c3b13a8f)
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Για το 2ο
ι) παρε την {|z|}^{2}+{|w|}^{2}={|z-w|}^{2} και βγηκε
ιι) στο Re(z w(συζηγης) =0 αντικαθιστας τα z,w
ιιι) Συμφωνα με την σχεση του (ιι) f(a)f(b) <0
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
forakos
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Για το 1ο πολλαπλασιασε και διαιρεσε με |xz1+z2|+1 και παρε την ιδιοτητα μετρου (πρεπει να ειναι f(0)=2 αν δεν κανω λαθος για να βγει )
Για το 2ο
ι) παρε την {|z|}^{2}+{|w|}^{2}={|z-w|}^{2} και βγηκε
ιι) στο Re(z w(συζηγης) =0 αντικαθιστας τα z,w
ιιι) Συμφωνα με την σχεση του (ιι) f(a)f(b) <0
Δεν είναι οι αποριες εδώ... Την έβαλα στη συλλογη!
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
![Πολύ χαρούμενος :D :D](https://www.e-steki.gr/images/smilies/biggrin.gif)
-----------------------------------------
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Δεν είναι οι αποριες εδώ... Την έβαλα στη συλλογη!Οπως κι να εχει..Αριστα!
-----------------------------------------
Ευχαριστω βαλε και αλλες αν ειναι ( Δεν μπορω να γραψω σε latex και δεν διακρινονται καλα τα οσα γραφω πανω )
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
riemann80
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Β) αν η συναρτηση f οριζεται στο (α,γ) και εχει μηδενικη παραγωγο στα διαστηματα (α,β) και (β,γ) οπου α<β<γ και ειναι συνεχης στο β,να δειξετε οτι ειναι σταθερη στο (α,γ)
2) εστω f:[0,1]-->Rπαραγωγισιμη συναρτηση με f(0)=0,f(1)=1.για καθε θετικο ακεραιο n να αποδειχτει οτι υπαρχουν n διακεκριμενα σημεια x1,...,Xn ετσι ωστε
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
jimmy007
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
1)Α) Αν η συναρτηση φ εχει πεδιο ορισμου τους μη μηδενικους πραγματικους αριθμους και η παραγωγος της μηδενιζεται παντου να βρεθει ο τυπος της
Β) αν η συναρτηση f οριζεται στο (α,γ) και εχει μηδενικη παραγωγο στα διαστηματα (α,β) και (β,γ) οπου α<β<γ και ειναι συνεχης στο β,να δειξετε οτι ειναι σταθερη στο (α,γ)
1)Α)f(x)=c1 για x>0 και f(x)=c2 για x<0
B) oμοίως με το A) f(x)=c1 για α<x<=β και f(x)=c2 για β<=x<γ. Λόγω της συνέχειας όμως στο β, c1=c2=c, οπότε f(x)=c, α<x<β.
-----------------------------------------
H άσκηση αυτή κυκλοφορεί και με z,z συζυγή..
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Metal-Militiaman
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
2) εστω f:[0,1]-->Rπαραγωγισιμη συναρτηση με f(0)=0,f(1)=1.για καθε θετικο ακεραιο n να αποδειχτει οτι υπαρχουν n διακεκριμενα σημεια x1,...,Xn ετσι ωστε
![]()
Θεωρούμε τον αριθμό
Eπειδή oι αριθμοί
τέτοια ώστε
Στα διαστήματα
Επειδή
Tελικά παίρνουμε
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 4 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 287 μέλη διάβασαν αυτό το θέμα:
- ggl
- ioanna2007
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.