μπαμπης5304
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kesmarag
Νεοφερμένος
Διάρκεια 3 ώρες
Ύλη : Ορισμός Συνάρτησης, Σύνθεση, Μονοτονία
Σύντομα θα αναρτήσω και τις λύσεις
https://www.math24.gr/pdf/lck/Diagonisma_B1.1_1.3.pdf
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
μπαμπης5304
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
antwwwnis
Διάσημο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vassilis498
Διακεκριμένο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
μπαμπης5304
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Αρχικά λύνω την εξίσωση . Έχουμε:
Έυκολα αποδεικνύεται με βάση την πρώτη δοθείσα σχέση οτι η είναι ένα προς ένα. Επομένως έχουμε διαδοχικά:
Από είναι
επομένως
Έστω τώρα . Επιλέγοντας εύκολα βλέπουμε ότι οπότε από έχουμε τελικά
και αυτή η συνάρτηση επαληθεύει τις δοθείσες σχέσεις.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Leo 93
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Αν για τους μιγαδικούς ισχύει καί να βρεθεί το
Μια κάπως ανορθόδοξη λύση που μας δίνει περισσότερα στοιχεία από όσα θέλουμε.
Αν z=x+yi όπου x, y ανήκουν R και ισχύει |z-i|=1 τότε έχουμε διαδοχικά |x+(y-1)i|=1 => |x+(y-1)i|^2=1 => (x^2)+(y-1)^2=1
Η παραπάνω εξίσωση παριστάνει κύκλο με κέντρο K(0,1) και ακτίνα ρ=1. Οι παραμετρικές εξισώσεις αυτού του κύκλου είναι x=συνθ, y=1+ημθ όπου 0<=θ<2π
Άρα z1=συνθ1+(1+ημθ1)i, z2=συνθ2+(1+ημθ2)i όπου 0<=θ1<2π και 0<=θ2<2π.
Έχουμε z1-z2=(συνθ1-συνθ2)+(ημθ1-ημθ2)i
Συνεπώς |z1-z2|^2=(συνθ1-συνθ2)^2+(ημθ1-ημθ2)^2=(συνθ1)^2+(συνθ2)^2-2συνθ1συνθ2+(ημθ1)^2+(ημθ2)^2-2ημθ1ημθ2=
=[(ημθ1)^2+(συνθ1)^2]+[(ημθ2)^2+(συνθ2)^2]-2(συνθ1συνθ2+ημθ1ημθ2)=(1+1)-2συν(θ1-θ2)=2-2συν[-(θ2-θ1)]=2[1-συν(θ2-θ1)]>=0 αφού συν(θ2-θ1)<=1
|z1-z2|=2 => |z1-z2|^2=4 => 2(1-συν(θ2-θ1))=4 => 1-συν(θ2-θ1)=2 => συν(θ2-θ1)=-1 => συν(θ2-θ1)=συνπ => θ2-θ1=(2κ+1)π => θ2=θ1+(2κ+1)π, κ ανήκει Ζ
0<=θ1<2π => -2π<-θ1<=0
0<=θ2<2π
Άρα -2π<θ2-θ1<2π => -2π<2κπ+π<2π => -3π<2κπ<π => -(3/2)<κ<(1/2) => κ=-1 ή κ=0
Για κ=-1 είναι θ2=θ1-π
0<=θ2<2π => 0<=θ1-π<2π => π<=θ1π και επειδή 0<=θ1<2π τότε πρέπει π<=θ1<2π
Αν θ1=θ τότε θ2=θ-π και ημθ2=ημ(θ-π)=-ημ(π-θ)=-ημθ, συνθ2=συν(θ-π)=συν(π-θ)=-συνθ
Για κ=0 είναι θ2=θ1+π
0<=θ2<2π => 0<=θ1+π<2π => -π<=θ1<π και επειδή 0<=θ1<2π τότε πρέπει 0<=θ1<π
Αν θ1=θ τότε θ2=θ+π και ημθ2=ημ(θ+π)=ημ(π-(-θ))=ημ(-θ)=-ημθ, συνθ2=συν(θ+π)=συν(π-(-θ))=-συν(-θ)=-συνθ
Και στις 2 περιπτώσεις είναι ημθ2=-ημθ, συνθ2=-συνθ
Συνεπώς z1=συνθ1+(1+ημθ1)i=συνθ+(1+ημθ)i, z2=συνθ2+(1+ημθ2)i=-συνθ+(1-ημθ)i όπου 0<=θ<2π
Έχουμε z1+z2=2i. Άρα |z1+z2|=|2i|=|2||i|=2*1=2
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
soras7
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Η σχέση |z1-i|=|z2-i|=1 μας λέει ότι z1 και z2 βρίσκονται πάνω στον ίδιο καθορισμένο κύκλο με κέντρο το z=i και ακτίνα 1.
Η σχέση |z1-z2|=2 μας λέει ότι τα z1 και z2 είναι αντιδιαμετρικά.
Άρα μπορούμε να γράψουμε:
z1=z+z0 και z2=z-z0.
Άρα |z1+z2|=|2z|=|2i|=2.
ο.ε.δ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
soras7
Νεοφερμένος
Oντως πρεπει να σκεφτομαστε πιο απλα.Ωραια αυτη η λυση με τον κυκλοΝα σκέφτεστε απλά. Να χρησιμοποιείτε όσο πιο άμεσα γίνεται τα δεδομένα.
Η σχέση |z1-i|=|z2-i|=1 μας λέει ότι z1 και z2 βρίσκονται πάνω στον ίδιο καθορισμένο κύκλο με κέντρο το z=i και ακτίνα 1.
Η σχέση |z1-z2|=2 μας λέει ότι τα z1 και z2 είναι αντιδιαμετρικά.
Άρα μπορούμε να γράψουμε:
z1=z+z0 και z2=z-z0.
Άρα |z1+z2|=|2z|=|2i|=2.
ο.ε.δ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Λήμμα
Αν με τότε
Απόδειξη
. Θέτουμε και έχουμε:
H αληθεύει μόνο αν και τότε υψώνοντας στο τετράγωνο προκύπτει . Άρα
Επιστρέφοντας στην άσκηση λοιπόν, η δεύτερη δοθείσα σχέση γράφεται
οπότε από το πάνω λήμμα με θα έχουμε ότι
απ΄όπου παίρνοντας μέτρα βρίσκουμε ότι αφού . Συνεπώς:
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
soras7
Νεοφερμένος
.Τα σχηματα που τα φτιαχνεις?????Όμορφα, βάζω και το σχήμα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 3 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 286 μέλη διάβασαν αυτό το θέμα:
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- ggl
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- nearos
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.