μπαμπης5304
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Πολύ χαρούμενος :D :D](https://www.e-steki.gr/images/smilies/biggrin.gif)
![Πολύ χαρούμενος :D :D](https://www.e-steki.gr/images/smilies/biggrin.gif)
![Πολύ χαρούμενος :D :D](https://www.e-steki.gr/images/smilies/biggrin.gif)
![Πολύ χαρούμενος :D :D](https://www.e-steki.gr/images/smilies/biggrin.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kesmarag
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Διάρκεια 3 ώρες
Ύλη : Ορισμός Συνάρτησης, Σύνθεση, Μονοτονία
Σύντομα θα αναρτήσω και τις λύσεις
https://www.math24.gr/pdf/lck/Diagonisma_B1.1_1.3.pdf
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
μπαμπης5304
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
antwwwnis
Διάσημο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vassilis498
Διακεκριμένο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
μπαμπης5304
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αρχικά λύνω την εξίσωση
Έυκολα αποδεικνύεται με βάση την πρώτη δοθείσα σχέση οτι η
Από
επομένως
Έστω τώρα
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Leo 93
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αν για τους μιγαδικούςισχύει
καί
να βρεθεί το
![]()
Μια κάπως ανορθόδοξη λύση που μας δίνει περισσότερα στοιχεία από όσα θέλουμε.
Αν z=x+yi όπου x, y ανήκουν R και ισχύει |z-i|=1 τότε έχουμε διαδοχικά |x+(y-1)i|=1 => |x+(y-1)i|^2=1 => (x^2)+(y-1)^2=1
Η παραπάνω εξίσωση παριστάνει κύκλο με κέντρο K(0,1) και ακτίνα ρ=1. Οι παραμετρικές εξισώσεις αυτού του κύκλου είναι x=συνθ, y=1+ημθ όπου 0<=θ<2π
Άρα z1=συνθ1+(1+ημθ1)i, z2=συνθ2+(1+ημθ2)i όπου 0<=θ1<2π και 0<=θ2<2π.
Έχουμε z1-z2=(συνθ1-συνθ2)+(ημθ1-ημθ2)i
Συνεπώς |z1-z2|^2=(συνθ1-συνθ2)^2+(ημθ1-ημθ2)^2=(συνθ1)^2+(συνθ2)^2-2συνθ1συνθ2+(ημθ1)^2+(ημθ2)^2-2ημθ1ημθ2=
=[(ημθ1)^2+(συνθ1)^2]+[(ημθ2)^2+(συνθ2)^2]-2(συνθ1συνθ2+ημθ1ημθ2)=(1+1)-2συν(θ1-θ2)=2-2συν[-(θ2-θ1)]=2[1-συν(θ2-θ1)]>=0 αφού συν(θ2-θ1)<=1
|z1-z2|=2 => |z1-z2|^2=4 => 2(1-συν(θ2-θ1))=4 => 1-συν(θ2-θ1)=2 => συν(θ2-θ1)=-1 => συν(θ2-θ1)=συνπ => θ2-θ1=(2κ+1)π => θ2=θ1+(2κ+1)π, κ ανήκει Ζ
0<=θ1<2π => -2π<-θ1<=0
0<=θ2<2π
Άρα -2π<θ2-θ1<2π => -2π<2κπ+π<2π => -3π<2κπ<π => -(3/2)<κ<(1/2) => κ=-1 ή κ=0
Για κ=-1 είναι θ2=θ1-π
0<=θ2<2π => 0<=θ1-π<2π => π<=θ1
![Love2 <3 <3](https://www.e-steki.gr/images/smilies/2018/love2.gif)
Αν θ1=θ τότε θ2=θ-π και ημθ2=ημ(θ-π)=-ημ(π-θ)=-ημθ, συνθ2=συν(θ-π)=συν(π-θ)=-συνθ
Για κ=0 είναι θ2=θ1+π
0<=θ2<2π => 0<=θ1+π<2π => -π<=θ1<π και επειδή 0<=θ1<2π τότε πρέπει 0<=θ1<π
Αν θ1=θ τότε θ2=θ+π και ημθ2=ημ(θ+π)=ημ(π-(-θ))=ημ(-θ)=-ημθ, συνθ2=συν(θ+π)=συν(π-(-θ))=-συν(-θ)=-συνθ
Και στις 2 περιπτώσεις είναι ημθ2=-ημθ, συνθ2=-συνθ
Συνεπώς z1=συνθ1+(1+ημθ1)i=συνθ+(1+ημθ)i, z2=συνθ2+(1+ημθ2)i=-συνθ+(1-ημθ)i όπου 0<=θ<2π
Έχουμε z1+z2=2i. Άρα |z1+z2|=|2i|=|2||i|=2*1=2
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Clapup :clapup: :clapup:](https://www.e-steki.gr/images/smilies/clapup.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
soras7
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Η σχέση |z1-i|=|z2-i|=1 μας λέει ότι z1 και z2 βρίσκονται πάνω στον ίδιο καθορισμένο κύκλο με κέντρο το z=i και ακτίνα 1.
Η σχέση |z1-z2|=2 μας λέει ότι τα z1 και z2 είναι αντιδιαμετρικά.
Άρα μπορούμε να γράψουμε:
z1=z+z0 και z2=z-z0.
Άρα |z1+z2|=|2z|=|2i|=2.
ο.ε.δ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
soras7
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Oντως πρεπει να σκεφτομαστε πιο απλαΝα σκέφτεστε απλά. Να χρησιμοποιείτε όσο πιο άμεσα γίνεται τα δεδομένα.
Η σχέση |z1-i|=|z2-i|=1 μας λέει ότι z1 και z2 βρίσκονται πάνω στον ίδιο καθορισμένο κύκλο με κέντρο το z=i και ακτίνα 1.
Η σχέση |z1-z2|=2 μας λέει ότι τα z1 και z2 είναι αντιδιαμετρικά.
Άρα μπορούμε να γράψουμε:
z1=z+z0 και z2=z-z0.
Άρα |z1+z2|=|2z|=|2i|=2.
ο.ε.δ.
![whistle :whistle: :whistle:](https://www.e-steki.gr/images/smilies/whistle.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Λήμμα
Αν
Απόδειξη
H
Επιστρέφοντας στην άσκηση λοιπόν, η δεύτερη δοθείσα σχέση γράφεται
απ΄όπου παίρνοντας μέτρα βρίσκουμε ότι
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
soras7
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Όμορφα, βάζω και το σχήμα.
![]()
![thumbsup :thumbsup: :thumbsup:](https://www.e-steki.gr/images/smilies/thumbsup.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 4 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 287 μέλη διάβασαν αυτό το θέμα:
- ggl
- ioanna2007
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.