t00nS
Εκκολαπτόμενο μέλος
αν γίνεται μου εξηγείς λιγο το 2ο ερωτημα..ευχαριστώ1)
2)
O θα βρεθεί από την λύση του συστήματος
Με λύσεις
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Chris1993
Περιβόητο μέλος
αν γίνεται μου εξηγείς λιγο το 2ο ερωτημα..ευχαριστώ
Έχεις βρεί από το 1ο ερώτημα τον γεωμετρικό τόπο. Που σημαίνει ότι οι εικόνες του z θα επαληθεύουν αυτή την εξίσωση ευθείας.
Όντως αυτή η ευθεία που βρήκαμε είναι παράλληλη στην ευθεία που μας λέει γιατί η κλίση είναι η ίδια.
Το μέτρο z είναι |z| και ισούται με ρίζα[x^2 +y^2] (1)
Εμείς θέλουμε |z|= ριζα34
Αν υψώσουμε και τα 2 μέλη στο τετράγωνο και αντικαταστήσουμε την (1) έχουμε
x^2 + y^2 = 34
Επομένως λύνοντας το σύστημα θα βρούμε τους z που το μέτρο τους ισούται με ριζα34.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
t00nS
Εκκολαπτόμενο μέλος
Σε ευχαριστώ!!Έχεις βρεί από το 1ο ερώτημα τον γεωμετρικό τόπο. Που σημαίνει ότι οι εικόνες του z θα επαληθεύουν αυτή την εξίσωση ευθείας.
Όντως αυτή η ευθεία που βρήκαμε είναι παράλληλη στην ευθεία που μας λέει γιατί η κλίση είναι η ίδια.
Το μέτρο z είναι |z| και ισούται με ρίζα[x^2 +y^2] (1)
Εμείς θέλουμε |z|= ριζα34
Αν υψώσουμε και τα 2 μέλη στο τετράγωνο και αντικαταστήσουμε την (1) έχουμε
x^2 + y^2 = 34
Επομένως λύνοντας το σύστημα θα βρούμε τους z που το μέτρο τους ισούται με ριζα34.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Α)να δειχτει οτι η εξισωση f(x)+g(x)=f(x)g(x) εχει το πολυ μια θετικη λυση
Β)να αποδειξετε οτι υπαρχει ενα ακριβως ξ E (0.1) τετοιο ωστε f(ξ)=(1/2)f(1/2)+(1/3)f(1/3)+(1/6)f(1/6)
Γ) βρειτε το πεδιο ορισμου της m(x)={-2/ριζα (fof)(x)}+1
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
panabarbes
Εκκολαπτόμενο μέλος
Δινονται οι γνησιως αυξουσες συναρτησεις f,g : (o,συν απειρο)--->R με τιμες θετικες για καθε x E R
Α)να δειχτει οτι η εξισωση f(x)+g(x)=f(x)g(x) εχει το πολυ μια θετικη λυση
Β)να αποδειξετε οτι υπαρχει ενα ακριβως ξ E (0.1) τετοιο ωστε f(ξ)=(1/2)f(1/2)+(1/3)f(1/3)+(1/6)f(1/6)
Γ) βρειτε το πεδιο ορισμου της m(x)={-2/ριζα (fof)(x)}+1
Παραθέτω την απάντηση για το Α), και αν προλάβω θα κάνω και τα άλλα!
Διόρθωση: Η h βγαίνει γνησίως φθίνουσα, αλλά λόγω κεκτημένης ταχύτητας έγραψα γνησίως αύξουσα!!!
Είσαι σίγουρος ότι η εκφώνηση σου είναι πλήρης; Θα έπρεπε τουλάχιστον να αναφέρει ότι η f είναι συνεχής...
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Συνημμένα
mary1269
Νεοφερμένος
το x->0 και μου ζηταει το lim f(x)
τι κανω??
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
τότε κλπ
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Καλησπέρα!Έχω το παρακάτω όριο...είναι σωστα λυμμένο??Και μια ακόμα ερώτηση άσχετη με το προηγούμενο ....μπορούμε να παραγωγισουμε μια τρίτη τάξης ρίζα??Ειναι εύκολο να μου δειξει κάποιος ένα παράδειγμα?? ευχαριστώ εκ των προτέρων!!View attachment 55010
και μετα παραγωγίζεις σαν το x^a
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος
και μετα παραγωγίζεις σαν το x^a
Οκ ευχαριστώ πολύ!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σωστό είναι το όριο. Μπορούσες να πολλαπλασιάσεις ταυτόχρονα και με την συζυγή του αριθμητή και του παρονομαστή για να γλυτώσεις χρόνο. Όσο για το άλλο που λες θέλει λίγη προσοχή καθώς είναι ανάλογα την περίπτωση.Καλησπέρα!Έχω το παρακάτω όριο...είναι σωστα λυμμένο??Και μια ακόμα ερώτηση άσχετη με το προηγούμενο ....μπορούμε να παραγωγισουμε μια τρίτη τάξης ρίζα??Ειναι εύκολο να μου δειξει κάποιος ένα παράδειγμα?? ευχαριστώ εκ των προτέρων!!View attachment 55010
Για παράδειγμα η συνάρτηση είναι ορισμένη στο και παραγωγίσιμη στο . Για έχει νόημα να γράψω
η οποία παραγωγίζεται με
Αν όμως είναι , αυτή είναι ορισμένη σε όλο το . Όμως επιτρέπεται να γράψω μόνο για . Άσκηση για σένα να εξετάσεις που είναι παραγωγίσιμη και να βρεις την παράγωγο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος
Σωστό είναι το όριο. Μπορούσες να πολλαπλασιάσεις ταυτόχρονα και με την συζυγή του αριθμητή και του παρονομαστή για να γλυτώσεις χρόνο. Όσο για το άλλο που λες θέλει λίγη προσοχή καθώς είναι ανάλογα την περίπτωση.
Για παράδειγμα η συνάρτηση είναι ορισμένη στο και παραγωγίσιμη στο . Για έχει νόημα να γράψω
η οποία παραγωγίζεται με
Αν όμως είναι , αυτή είναι ορισμένη σε όλο το . Όμως επιτρέπεται να γράψω μόνο για . Άσκηση για σένα να εξετάσεις που είναι παραγωγίσιμη και να βρεις την παράγωγο.
ευχαριστω πολυ
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος
Στο 1ο παίρνω πλευρικά όρια...αλλά δεν ξέρω πως να διώξω την απροσδιοριστια...με μπερδεύει η ρίζα
Στο 2ο επίσης δεν ξέρω πως να διώξω την απροσδιοριστια...το |χ-3| το έκανα -(χ-3) και το |χ-1| το έκανα (χ-1)View attachment 55049
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος
Στην 3η Πολλαπλασιάζεις αριθμητή και παρονομαστή με τη συζυγή ρίζα και προκύπτει χ*ρίζα(1+συνχ)/ρίζαημ²χ=|χ/ημχ|*ρίζα(1+συνχ) διότι το χ πλησιάζει στο 0 από δεξιά . Αρα παίρνει πριν θετικές τιμές και το όριο 1*ρίζα2=ρίζα2Γεια σας κ πάλι!!Έχω κολλήσει άσχημα στα παρακάτω ορια..
Στο 1ο παίρνω πλευρικά όρια...αλλά δεν ξέρω πως να διώξω την απροσδιοριστια...με μπερδεύει η ρίζα
Στο 2ο επίσης δεν ξέρω πως να διώξω την απροσδιοριστια...το |χ-3| το έκανα -(χ-3) και το |χ-1| το έκανα (χ-1)View attachment 55049
Στη2 βρίσκεις το τριώνυμο ότι έχει ρίζες 1 και 2 και εκτός των ριζών παίρνει θετική τιμή Αρα πλησιάζει το χ στο 2 από δεξιά γιατί αλλιώς η ρίζα δεν έχει νόημα το τριώνυμο είναι θετικό (εκτός ριζών) το αναλύεις σε γινόμενο παραγόντων και το χ²-4 βγάζεις κοινό παράγοντα τον χ-2, τον απλοποιείς με τη ρίζα του παρονομαστή και μένει στον αριθμητή ρίζα (χ-2)(2χ+1) που έχει όριο 0*5=0
Το ίδιο και για την 3
Είναι πολύ αργά. Καληνύχτα
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Γεια σας κ πάλι!!Έχω κολλήσει άσχημα στα παρακάτω ορια..
Στο 1ο παίρνω πλευρικά όρια...αλλά δεν ξέρω πως να διώξω την απροσδιοριστια...με μπερδεύει η ρίζα
Θεωρούμε την συνάρτηση f(x)=[|(x^2)-3x+2|+(x^2)-4]/SQRT(x-2)
Για να ορίζεται η f πρέπει να ισχύει x-2>0 => x>2, οπότε το πεδίο ορισμού της f είναι το Α=(2,+οο). Συνεπώς έχει νόημα η αναζήτηση του ορίου lim(x->2)f(x) εφόσον υπάρχει το οποίο σε αυτή την περίπτωση συμπίπτει με το πλευρικό όριο lim(x->2+)f(x) εφόσον x>2.
Θεωρούμε το πολυώνυμο P(x)=(x^2)-3x+1, x ανήκει R. Έχουμε:
P(x)=(x^2)-3x+3-1=[(x^2)-1]-3(x-1)=(x-1)(x+1)-3(x-1)=(x-1)(x+1-3)=(x-1)(x-2)
Για x>2 είναι x-1>1>0 και x-2>0 οπότε P(x)>0. Άρα για x>2 είναι |(x^2)-3x+2|=(x^2)-3x+2 και η f γράφεται στη μορφή:
f(x)=[2(x^2)-3x-2]/SQRT(x-2), x>2
Θεωρούμε το πολυώνυμο Q(x)=2(x^2)-3x-2, x ανήκει R. Η διακρίνουσα της εξίσωσης Q(x)=0 είναι Δ=((-3)^2)-4*2*(-2)=9+16=25>0 οπότε η εξίσωση Q(x)=0 έχει δύο ρίζες:
x1=(-(-3)-SQRT(25))/(2*2)=(3-5)/4=(-2)/4=-1/2
x2=(-(-3)+SQRT(25))/(2*2)=(3+5)/4=8/4=2
Άρα Q(x)=2(x-2)(x+1/2)=(x-2)(2x+1). Αντικαθιστούμε στην έκφραση της f και έχουμε
f(x)=(x-2)(2x+1)/SQRT(x-2)=(2x+1)[(SQRT(x-2)^2)/SQRT(x-2)]=(2x-1)SQRT(x-2)
Άρα η f γράφεται ισοδύναμα στη μορφή f(x)=(2x+1)SQRT(x-2), x>2
lim(x->2)f(x)=lim(x->2+)f(x)=lim(x->2+)[(2x+1)SQRT(x-2)]=(2*2+1)SQRT(2-2)=(4+1)SQRT(0)=5*0=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος
Σας ευχαριστώ παρά πολυ κ τους δύοΘεωρούμε την συνάρτηση f(x)=[|(x^2)-3x+2|+(x^2)-4]/SQRT(x-2)
Για να ορίζεται η f πρέπει να ισχύει x-2>0 => x>2, οπότε το πεδίο ορισμού της f είναι το Α=(2,+οο). Συνεπώς έχει νόημα η αναζήτηση του ορίου lim(x->2)f(x) εφόσον υπάρχει το οποίο σε αυτή την περίπτωση συμπίπτει με το πλευρικό όριο lim(x->2+)f(x) εφόσον x>2.
Θεωρούμε το πολυώνυμο P(x)=(x^2)-3x+1, x ανήκει R. Έχουμε:
P(x)=(x^2)-3x+3-1=[(x^2)-1]-3(x-1)=(x-1)(x+1)-3(x-1)=(x-1)(x+1-3)=(x-1)(x-2)
Για x>2 είναι x-1>1>0 και x-2>0 οπότε P(x)>0. Άρα για x>2 είναι |(x^2)-3x+2|=(x^2)-3x+2 και η f γράφεται στη μορφή:
f(x)=[2(x^2)-3x-2]/SQRT(x-2), x>2
Θεωρούμε το πολυώνυμο Q(x)=2(x^2)-3x-2, x ανήκει R. Η διακρίνουσα της εξίσωσης Q(x)=0 είναι Δ=((-3)^2)-4*2*(-2)=9+16=25>0 οπότε η εξίσωση Q(x)=0 έχει δύο ρίζες:
x1=(-(-3)-SQRT(25))/(2*2)=(3-5)/4=(-2)/4=-1/2
x2=(-(-3)+SQRT(25))/(2*2)=(3+5)/4=8/4=2
Άρα Q(x)=2(x-2)(x+1/2)=(x-2)(2x+1). Αντικαθιστούμε στην έκφραση της f και έχουμε
f(x)=(x-2)(2x+1)/SQRT(x-2)=(2x+1)[(SQRT(x-2)^2)/SQRT(x-2)]=(2x-1)SQRT(x-2)
Άρα η f γράφεται ισοδύναμα στη μορφή f(x)=(2x+1)SQRT(x-2), x>2
lim(x->2)f(x)=lim(x->2+)f(x)=lim(x->2+)[(2x+1)SQRT(x-2)]=(2*2+1)SQRT(2-2)=(4+1)SQRT(0)=5*0=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Στο 2ο επίσης δεν ξέρω πως να διώξω την απροσδιοριστια...το |χ-3| το έκανα -(χ-3) και το |χ-1| το έκανα (χ-1)View attachment 55049
Θεωρούμε την συνάρτηση f(x)=(|x-3|+|x-1|-2)/(x-2)
Για να ορίζεται η f πρέπει να ισχύει x διάφορο 2, οπότε το πεδίο ορισμού της είναι το Α=(-οο,2)U(2,+οο).
(α) Αν x>=3 τότε x-3>=0 και x-1>=2>0, οπότε |x-3|=x-3 και |x-1|=x-1. Άρα f(x)=(x-3+x-1-2)/(x-2)=(2x-6)/(x-2)=2[(x-3)/(x-2)]
(β) Αν x<=1 τότε x-3<=-2<0 και x-1<=0, οπότε |x-3|=-x+3 και |x-1|=-x+1. Άρα f(x)=(-x+3-x+1-2)/(x-2)=(-2x+2)/(x-2)=2[(1-x)/(x-2)]
(γ) Αν 1<x<2 ή 2<x τότε x-3<0 και x-1>0, οπότε |x-3|=-x+3 και |x-1|=x-1. Άρα f(x)=(-x+3+x-1-2)/(x-2)=0
Επομένως
f(x)=2[(1-x)/(x-2)], x<=1
f(x)=0, 1<x<2 ή 2<x
f(x)=2[(x-3)/(x-2)], x>=3
Συνεπώς lim(x->2)f(x)=lim(x->2)0=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
trikalapost
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Διονύσης13
Τιμώμενο Μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Άντε να βάλω και εγώ μια άσκηση Αν για κάθε να βρείτε το όταν το x--->0
Η f έχει πεδίο ορισμού το A=R.
Για κάθε x1, x2 ανήκει R με f(x1)=f(x2) ισχύει (f(x1)^3)=(f(x2)^3), οπότε (f(x1)^3)+f(x1)=(f(x2)^3)+f(x2) => x1=x2.
Άρα η f είναι 1-1 και συνεπώς αντιστρέψιμη. Αυτό σημαίνει ότι για κάθε x ανήκει Α, y ανήκει f(A) ισχύει y=f(x) <=> x=(f-1)(y)
Επομένως (f-1)(y)=(y^3)+2y. Παρατηρούμε ότι η f-1 έχει πεδίο ορισμού το f(A)=R και πεδίο τιμών το A=R. Η f-1 είναι συνεχής στο f(A), οπότε και η f είναι συνεχής στο A.
(f-1)(0)=0 <=> f(0)=0
f συνεχής στο A => f συνεχής στο 0 => lim(x->0)f(x)=f(0)=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 11 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 224 μέλη διάβασαν αυτό το θέμα:
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.