paganini666
Δραστήριο μέλος
σωστα! Τελικά αυτο ειναι το μυστικο. Εκει κρυβεται η ουσια.(να επισημανω οτι αυτο ειναι βασικο στοιχειο.
δηλαδη για να ισχυουν αυτα που ειπαμε πριν, πρεπει ο παικτης να γνωριζει οτι ετσι κι αλλιως ο παρουσιαστης θα ανοιξει μετα μια λαθος κουρτινα.
αλλιως δεν ισχυουν
[σκεφτειτε την ακραια περιπτωση που ο παρουσιαστης κανει νεα προταση μονο αν εχετε διαλεξει το αυτοκινητο]
[ή μπορει ν' ανοιγει τυχαια την κουρτινα (χωρις να ξερει αν ειναι η τυχερη). Τοτε, αν ανοιξει τη λαθος, οι πιθανοτητες θα ειναι 50-50]
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
amalfi
Δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
stathismel
Νεοφερμένος
Στην συγκεκριμένη περίπτωση όμως με το που ανοίγει η κουρτίνα Β έχουμε δεδομένο ότι το αυτοκίνητο δεν βρίσκεται στην κουρτίνα Β, δηλαδή το ενδεχόμενο Β΄ λαμβάνεται ως δεδομένο. Αυτό πρακτικά σημαίνει ότι αλλάζει ο "δειγματικός χώρος" του πειράματος τύχης. Από Ω=AUBUΓ γίνεται Ω΄=Β΄. Πρόκειται για δεσμευμένη ή υπο συνθήκη πιθανότητα.
Το συμπλήρωμα Β΄ του Β έχει πιθανότητα P(Β΄)=1-P(Β)=2/3. Επειδή τα Α, Β, Γ είναι ασυμβίβαστα ενδεχόμενα ισχύει Α-Β=Α και Γ-Β=Γ.
Έχεις δίκιο ότι αλλάζει ο δειγματικός χώρος αλλά στη νέα κατάσταση που βρίσκεσαι λες ότι P(B')=1-P(B)=2/3, πράγμα που ισχύει για την προηγούμενη κατάσταση κατά την οποία ο παρουσιαστής δεν είχε ανοίξει κάποια κουρτίνα. Στη νέα κατάσταση ,όπως λες και εσύ, έχουμε αποκλείσει την πιθανότητα να είναι στη Β και άρα P(B')=1.
Το μυστικό είναι να καταλάβουμε ότι εφόσον την Α την επιλέξαμε τυχαία και χωρίς να έχει επέμβει κάπου ο παρουσιαστής, τότε αυτή διατηρεί την πιθανότητα 1/3 που είχε αρχικά. Δηλαδή αν παραμένουμε πάντα στην αρχική μας επιλογή, οι πιθανότητες τελικά θα είναι όσες ήταν και αρχικά(1/3)!
Έτσι αφού έχουμε 2 κουρτίνες να επιλέξουμε, θα επιλέξουμε τη διαφορετική από αυτή που είχαμε επιλέξει αρχικά.
Όπως έχει ήδη ειπωθεί, το κλειδί στην υπόθεση είναι ότι εμείς γνωρίζουμε ότι ο παρουσιαστής γνωρίζει που βρίσκεται το αμάξι και η κουρτίνα που ανοίγει είναι μέρος του παιχνιδιού που συμβαίνει πάντα ανεξάρτητα ποια είναι η δικιά μας αρχική επιλογή.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
arximidis
Εκκολαπτόμενο μέλος
Λόγω αντικειμένου και επειδή δεν τα χάνω με τίποτα αυτά σας παραπέμπω στην ταινία 21.
Φοβερή ταινία!! Πέρα από το "μαθηματικό-blackjack" μέρος της ταινίας, απίστευτη είναι και η Kate Bosworth...τρελός έρωτας!
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Έχεις δίκιο ότι αλλάζει ο δειγματικός χώρος αλλά στη νέα κατάσταση που βρίσκεσαι λες ότι P(B')=1-P(B)=2/3, πράγμα που ισχύει για την προηγούμενη κατάσταση κατά την οποία ο παρουσιαστής δεν είχε ανοίξει κάποια κουρτίνα. Στη νέα κατάσταση ,όπως λες και εσύ, έχουμε αποκλείσει την πιθανότητα να είναι στη Β και άρα P(B')=1.
Το μυστικό είναι να καταλάβουμε ότι εφόσον την Α την επιλέξαμε τυχαία και χωρίς να έχει επέμβει κάπου ο παρουσιαστής, τότε αυτή διατηρεί την πιθανότητα 1/3 που είχε αρχικά. Δηλαδή αν παραμένουμε πάντα στην αρχική μας επιλογή, οι πιθανότητες τελικά θα είναι όσες ήταν και αρχικά(1/3)!
Έτσι αφού έχουμε 2 κουρτίνες να επιλέξουμε, θα επιλέξουμε τη διαφορετική από αυτή που είχαμε επιλέξει αρχικά.
Όπως έχει ήδη ειπωθεί, το κλειδί στην υπόθεση είναι ότι εμείς γνωρίζουμε ότι ο παρουσιαστής γνωρίζει που βρίσκεται το αμάξι και η κουρτίνα που ανοίγει είναι μέρος του παιχνιδιού που συμβαίνει πάντα ανεξάρτητα ποια είναι η δικιά μας αρχική επιλογή.
Τα ενδεχόμενα Α,Β,Γ αναφέρονται στον δειγματικό χώρο Ω οπότε P(B΄)=2/3 και όχι 1. Τα ενδεχόμενα Α|Β΄ και Γ|Β΄ αναφέρονται στον δειγματικό χώρο Ω΄=Β΄. Οι πιθανότητες των ενδεχομένων του δειγματικού χώρου Ω΄ υπολογίζονται με την βοήθεια των πιθανοτήτων των ενδεχομένων του δειγματικού χώρου Ω.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
milanezos92
Εκκολαπτόμενο μέλος
γνωριζω τη λυση καθως τεθηκε το ιδιο ερωτημα σε εναν φοιτητη στην ταινια 21..............Κατά το τελικό στάδιο ενός τηλεπαιχνιδιού, ο παίκτης καλείται να επιλέξει ανάμεσα σε τρεις κουρτίνες (έστω Α,Β,Γ) έτσι ώστε να κερδίσει το αμάξι που βρίσκεται πίσω από την τυχερή κουρτίνα.
Ο παίκτης μας (στην περίπτωσή μας) αποφασίζει τελικά να διαλέξει την κουρτίνα Α.
Ο τηλεπαρουσιαστής όμως, αντί να δώσει εντολή για άνοιγμα της κουρτίνας Α, θέλοντας να παρατείνει το παιχνίδι (όπως κάνει κάθε φορά για να μην τελειώσει αμέσως η εκπομπή) δίνει εντολή να ανοίξουν μια διαφορετική κουρτίνα από αυτή που διάλεξε ο παίκτης και μάλιστα για να μην τελειώσει το παιχνίδι όπως είπαμε, διαλέγει αυτή στην οποία ξέρει από πριν ότι δε βρίσκεται το αμάξι. Ας πούμε ότι στην περίπτωσή μας ανοίγει την κουρτινα Β.
Έτσι, όπως κάθε φορά, ο παρουσιαστής ρωτάει τον παίκτη "είσαι σίγουρος ότι θέλεις την κουρτίνα που επέλεξες αρχικά ή μήπως τώρα θέλεις να αλλάξεις κουρτίνα;"
Το ερώτημα, είναι τί θα κάνατε εσείς στη θέση του παίκτη...Α ή Γ;;;
Υ.Γ.:Το παράδοξο αυτό ίσως είναι γνωστό σε αρκετούς...οπότε ας απαντήσουν μόνο όσοι έρχονται για 1η φορά σε επαφή με το πρόβλημα ή όσοι τέλος πάντων δε γνωρίζουν τη λύση από πριν.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
stathismel
Νεοφερμένος
Τα ενδεχόμενα Α,Β,Γ αναφέρονται στον δειγματικό χώρο Ω οπότε P(B΄)=2/3 και όχι 1. Τα ενδεχόμενα Α|Β΄ και Γ|Β΄ αναφέρονται στον δειγματικό χώρο Ω΄=Β΄. Οι πιθανότητες των ενδεχομένων του δειγματικού χώρου Ω΄ υπολογίζονται με την βοήθεια των πιθανοτήτων των ενδεχομένων του δειγματικού χώρου Ω.
Εφόσον ο νέος σου δειγματικός χώρος είναι ο Ω'=Β', πώς είναι δυνατόν η πιθανότητα P(B')=P(Ω') να είναι ίση με 2/3;
Νομίζω ότι γενικά ισχύει το παρακάτω:
Αν Ω είναι ο δειγματικός μας χώρος, τότε P(Ω)=1.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Εφόσον ο νέος σου δειγματικός χώρος είναι ο Ω'=Β', πώς είναι δυνατόν η πιθανότητα P(B')=P(Ω') να είναι ίση με 2/3;
Νομίζω ότι γενικά ισχύει το παρακάτω:
Αν Ω είναι ο δειγματικός μας χώρος, τότε P(Ω)=1.
Πρόκειται για δεσμευμένη πιθανότητα. Όταν γράφουμε P(A), P(B), P(Γ) και οποιαδήποτε πιθανότητα ενός ενδεχομένου που προκύπτει με πράξεις μεταξύ των Α, Β και Γ τότε αναφερόμαστε στον δειγματικό χώρο Ω. Στον δειγματικό χώρο Β΄ αναφερόμαστε μόνο όταν υπάρχει δέσμευση, δηλαδή Α|Β' και Γ|Β΄. Συνεπώς P(Β΄)=2/3 και P(Β΄|Β΄)=1.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
stathismel
Νεοφερμένος
Πρόκειται για δεσμευμένη πιθανότητα. Όταν γράφουμε P(A), P(B), P(Γ) και οποιαδήποτε πιθανότητα ενός ενδεχομένου που προκύπτει με πράξεις μεταξύ των Α, Β και Γ τότε αναφερόμαστε στον δειγματικό χώρο Ω. Στον δειγματικό χώρο Β΄ αναφερόμαστε μόνο όταν υπάρχει δέσμευση, δηλαδή Α|Β' και Γ|Β΄. Συνεπώς P(Β΄)=2/3 και P(Β΄|Β΄)=1.
...τότε γιατί διαιρείς με τον όρο Ρ(Β') και όχι με τον P(Β'/Β') εκεί που βρίσκεις τα P(Α/Β') και Ρ(Γ/Β');
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
...τότε γιατί διαιρείς με τον όρο Ρ(Β') και όχι με τον P(Β'/Β') εκεί που βρίσκεις τα P(Α/Β') και Ρ(Γ/Β');
Γιατί έτσι είναι το θεώρημα της δεσμευμένης πιθανότητας. Γενικά αν Α και Β δύο ενδεχόμενα του δειγματικού χώρου Ω τότε ισχύει P(A|B)=P(AτομήB)/P(B). Εκφράζουμε την πιθανότητα του ενδεχομένου A|B στον δειγματικό χώρο Β σε συνάρτηση με τις πιθανότητες των ενδεχομένων ΑτομήΒ και Β του δειγματικού χώρου Ω. Ίσως η δεσμευμένη πιθανότητα να υπάρχει και στο βιβλίο των μαθηματικών γενικής παιδείας αλλά ήταν εκτός ύλης.
Η απόδειξη είναι απλή
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
stathismel
Νεοφερμένος
Γιατί έτσι είναι το θεώρημα της δεσμευμένης πιθανότητας. Γενικά αν Α και Β δύο ενδεχόμενα του δειγματικού χώρου Ω τότε ισχύει P(A|B)=P(AτομήB)/P(B). Εκφράζουμε την πιθανότητα του ενδεχομένου A|B στον δειγματικό χώρο Β σε συνάρτηση με τις πιθανότητες των ενδεχομένων ΑτομήΒ και Β του δειγματικού χώρου Ω. Ίσως η δεσμευμένη πιθανότητα να υπάρχει και στο βιβλίο των μαθηματικών γενικής παιδείας αλλά ήταν εκτός ύλης.
Η απόδειξη είναι απλή
Καταλαβαίνω τί λες...όλα αυτά που γράφεις όμως στην απόδειξή σου, ισχύουν στην περίπτωση που ο παρουσιαστής άνοιξε τυχαία την κουρτίνα Β και έτυχε να μην είναι μέσα το αμάξι.
Στην περίπτωσή μας όμως, ο παρουσιαστής ανοίγει υποχρεωτικά μια κουρτίνα που να μην έχει το αμάξι μέσα. Το γεγονός αυτό αλλάζει το πρόβλημα και κάνει λίγο πιο δύσκολη τη χρήση τύπων...
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
statakos
Εκκολαπτόμενο μέλος
Εδώ έχουμε δεσμευμένη πιθανότητα ενδεχομένου. Η πιθανότητα να βρίσκεται το αμάξι σε μία κουρίνα είναι 1/3. Έτσι μετά το άνοιγμα της μιας κουρτίνας, η οποία δεν έκρυβε το αμάξι, αν δεν αλλάξω κουρτίνα η πιθανότητα να κερδίσω είναι 1/3 ενώ αν αλλάξω κουρτίνα η πιθανότητα να κερδίσω είναι 2/3. Δεν είναι όμως ακριβώς έτσι τα πράγματα. Γιατί εδώ έχουμε δεσμευμένη πιθανότητα ενδεχομένου.
Θεωρούμε τα ενδεχόμενα
Α={το αυτοκίνητο βρισκεται στην κουρτίνα Α}
Β={το αυτοκίνητο βρίσκεται στην κουρτίνα Β}
Γ={το αυτοκίνητο βρίσκεται στην κουρτίνα Γ}
Τα ενδεχόμενα είναι ασυμβίβαστα μεταξύ τους (ανά δύο αλλά και τα 3 μαζί) καθώς το αυτοκίνητο δεν γίνεται να βρίσκεται σε δύο κουρτίνες αλλά μόνο σε μία.
Έστω ότι ανοίγει η κουρτίνα Β και δεν βρίσκεται το αυτοκίνητο σε αυτήν.
Όντως ισχύει P(A)=P(B)=P(Γ)=1/3. Στην συγκεκριμένη περίπτωση όμως με το που ανοίγει η κουρτίνα Β έχουμε δεδομένο ότι το αυτοκίνητο δεν βρίσκεται στην κουρτίνα Β, δηλαδή το ενδεχόμενο Β΄ λαμβάνεται ως δεδομένο. Αυτό πρακτικά σημαίνει ότι αλλάζει ο "δειγματικός χώρος" του πειράματος τύχης. Από Ω=AUBUΓ γίνεται Ω΄=Β΄. Πρόκειται για δεσμευμένη ή υπο συνθήκη πιθανότητα.
Το συμπλήρωμα Β΄ του Β έχει πιθανότητα P(Β΄)=1-P(Β)=2/3. Επειδή τα Α, Β, Γ είναι ασυμβίβαστα ενδεχόμενα ισχύει Α-Β=Α και Γ-Β=Γ.
Η πιθανότητα του ενδεχομένου Α|Β΄={το αυτοκίνητο βρίσκεται στην κουρτίνα Α με δεδομένο ότι δεν βρίσκεται στην κουρτίνα Β} είναι
Oμοίως βρίσκουμε ότι Η πιθανότητα του ενδεχομένου Γ|Β΄={το αυτοκίνητο βρίσκεται στην κουρτίνα Γ με δεδομένο ότι δεν βρίσκεται στην κουρτίνα Β} είναι
Με δεδομένο λοιπόν ότι το αυτοκίνητο δεν βρίσκεται στην κουρτίνα Β και βρίσκεται σε μία από τις Α και Γ, τότε υπάρχει 50% πιθανότητα να διαλέξουμε την κουρτίνα που κρύβει το αυτοκίνητο.
παντως τον τελευταιο καιρο που αρχισα να ασχολουμαι με πιθανοτητες παρατηρησα οτι η διαισθηση με ξεγελαει συχνα.. πιο δυσκολες απ οσο φαινονται! (και ενδιαφερουσες!)
[off]Αναμένεται ενδιαφέρον το τρίτο εξάμηνο με τις πιθανότητες και καθηγητή τον κ.Τουμπή ... [\off]
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
jimissss
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
taketrance
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
fockos
Επιφανές μέλος
Κατά το τελικό στάδιο ενός τηλεπαιχνιδιού, ο παίκτης καλείται να επιλέξει ανάμεσα σε τρεις κουρτίνες (έστω Α,Β,Γ) έτσι ώστε να κερδίσει το αμάξι που βρίσκεται πίσω από την τυχερή κουρτίνα.
Ο παίκτης μας (στην περίπτωσή μας) αποφασίζει τελικά να διαλέξει την κουρτίνα Α.
Ο τηλεπαρουσιαστής όμως, αντί να δώσει εντολή για άνοιγμα της κουρτίνας Α, θέλοντας να παρατείνει το παιχνίδι (όπως κάνει κάθε φορά για να μην τελειώσει αμέσως η εκπομπή) δίνει εντολή να ανοίξουν μια διαφορετική κουρτίνα από αυτή που διάλεξε ο παίκτης και μάλιστα για να μην τελειώσει το παιχνίδι όπως είπαμε, διαλέγει αυτή στην οποία ξέρει από πριν ότι δε βρίσκεται το αμάξι. Ας πούμε ότι στην περίπτωσή μας ανοίγει την κουρτινα Β.
Έτσι, όπως κάθε φορά, ο παρουσιαστής ρωτάει τον παίκτη "είσαι σίγουρος ότι θέλεις την κουρτίνα που επέλεξες αρχικά ή μήπως τώρα θέλεις να αλλάξεις κουρτίνα;"
Το ερώτημα, είναι τί θα κάνατε εσείς στη θέση του παίκτη...Α ή Γ;;;
Υ.Γ.:Το παράδοξο αυτό ίσως είναι γνωστό σε αρκετούς...οπότε ας απαντήσουν μόνο όσοι έρχονται για 1η φορά σε επαφή με το πρόβλημα ή όσοι τέλος πάντων δε γνωρίζουν τη λύση από πριν.
Είναι θέμα πιθανοτήτων και θα άλλαζα την κουρτίνα μου. Γιατί με το άνοιγμα του άδειου κουτιού οι πιθανότητες αυξάνονται.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
jjoohhnn
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
jimissss
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
katsarida003
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 1 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 3 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.