gersi
Εκκολαπτόμενο μέλος
μια βοηθεια
δινονται δυο συναρτησεις f,g : [ α,β] -> R . αν g(x) >0 για καθε χ που ανηκει στο [α,β] να δειξετε οτι υπαρχει ενα τουλαχιστον ξ που ανηκει στο [ α,β] τετοιο ωστε :
∫f(x)g(x)dx = f(ξ) * ∫g(x) dx .(ακρα ολοκληρωσης α,β)
Η άσκηση είναι ακριβώς έτσι γραμμένη? Αναφέρει τίποτα για συνέχεια?
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
georgekok
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
IasonasM
Εκκολαπτόμενο μέλος
f συνεχής στο [a,b] άρα παίρνει μέγιστη και ελάχιστη τιμή (έστω M,m αντίστοιχα). Λύσε την σχέση που θες να δείξει ως προς f(ξ) και χρησιμοποιώντας το m <= f(x) <= M δείξε ότι το για το πηλίκο Π των ολοκληρωμάτων ισχύει m <= Π <= M. άρα από το Θ.Ε.Τ. (και αφού f συνεχής στο [a,b]) υπάρχει ξ ε [α,β] : f(ξ)= Π
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
DumeNuke
Τιμώμενο Μέλος
a+b-x=x
Αντ' αυτού, θεωρείς ότι x=a+b-u (με το u ως μεταβλητή) και συνεχίζεις.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
georgekok
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
gersi
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
konna96
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 856924
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Filippos14
Εκκολαπτόμενο μέλος
Παιδες να ρωτησω αξιζει να παλευω να λυνω ασκησεις απ το Στεργιου ενω στο φροντ. δεν εχουμε κανει μεχρι στιγμης παρομοιες;
Εννοειτε πως ναι,οτι προερχεται απο προσωπικη ενασχοληση(ειδικα στα μαθηματα) εχει καλα αποτελεσματα
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
gersi
Εκκολαπτόμενο μέλος
για καθε
α) Να αποδειξετε οτι
για καθε
β)Να βρειτε τον τυπο της συναρτησης .
Στο ερωτημα β πως δουλευουμε;
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Εστω συναρτηση η οποια ειναι παραγωγισιμη με και τετοια ωστε
για καθε
α) Να αποδειξετε οτι
για καθε
β)Να βρειτε τον τυπο της συναρτησης .
Στο ερωτημα β πως δουλευουμε;
Παραγωγίζω τη σχέση.
Για χ=0: Στην αρχική σχέση για χ=0: Υπολογίζεις με ολοκλήρωση κατά παράγοντες το ολοκλήρωμα, μετά βρίσκεις το f'(0) οπότε και το c και βγαίνει ο τύπος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Filippos14
Εκκολαπτόμενο μέλος
Κανεις παραγοντικη στο ολοκληρωμα της σχεσης και αντικαθιστας το αποτελεσμα στιν 1η σχεση,καταληγεις μετα απο πραξεις εδω :Εστω συναρτηση η οποια ειναι παραγωγισιμη με και τετοια ωστε
για καθε
α) Να αποδειξετε οτι
για καθε
β)Να βρειτε τον τυπο της συναρτησης .
Στο ερωτημα β πως δουλευουμε;
f'(x)=f(x)*ln[f(x)],f(x)>0 =>
f'(x)/f(x)=ln[f(x)] =>
[lnf(x)]'=lnf(x) klp klp
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
meletis96
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
millie_M
Νεοφερμένος
f(x)= ολοκληρωμα απο 1 εως χ του χlntdt . θελει να βρω τον τύπο της f. πρέπει να βρω την f'(x) ή να κάνω ολοκλήρωση κατα παράγοντες?
nai kata paragontes
aplws sto telos [x*x*lnt]apo 1 ews x + [x*1/t] apo 1 ews x+ c
den xerw pali . Dokimase to ligo kai as pei kai kanenas allos ti lisi tou
Elpizw na voithaw
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
VeeM
Εκκολαπτόμενο μέλος
f(x)= ολοκληρωμα απο 1 εως χ του χlntdt . θελει να βρω τον τύπο της f. πρέπει να βρω την f'(x) ή να κάνω ολοκλήρωση κατα παράγοντες?
Ειναι το ιδιο πραγμα. Αν κανεις κατα παραγοντες πρεπει πρωτα να πεταξεις εξω απο το ολοκληρωμα το x αφου το ολοκλ ειναι ως προς dt. Το ιδιο ισχυει και με την f'. Δλδ για να παραγωγησεις πρεπει να πεταξεις εξω το χ και μενει :
f'(x)= xlnx + ολοκληρωμα πο 1 εως x του lnt dt που το βρισκεις κατα παραγοντες.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
DumeNuke
Τιμώμενο Μέλος
f(x)= ολοκληρωμα απο 1 εως χ του χlntdt . θελει να βρω τον τύπο της f. πρέπει να βρω την f'(x) ή να κάνω ολοκλήρωση κατα παράγοντες?
Αφού ολοκληρώνεις ως προς dt, το χ βγαίνει έξω από το ολοκλήρωμα και βρίσκεις Ολοκλήρωμα 1 εως χ (lntdt). Το ολοκλήρωμα της λογαριθμικής δηλαδή, το οποίο είναι t(lnt-1).
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
nPb
Επιφανές μέλος
αν
Aν σε μπερδεύει το x και το θεωρείς υποσυνείδητα ανεξάρτητη μεταβλητή, βάλε άλλο γράμμα π.χ. c, ω, ξ,...Το f(κάτι) είναι τιμή της f στο κάτι.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
a)Ν.δ.ο η f' είναι συνεχής στο (0,+απειρο) και να βρεθει η f
b)ν.δ.ο (x-1/2x^2)f(x)< ολοκλήρωμα απο 1 εως χ του f(t)/2t^2 dt<x-1/2,x>1
c)Να βρεθεί η F(x)=ολοκλήρωμα από 1 εως χ του (1+(1/2t^2) f(t)dt,x>1
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Δίνεται η παραγωγίσιμη f: (0,+apeiro)---->R για την οποία ισχύουν: f(x)>0 για κάθε χ>0...f'(x)+2xf(x)=0 για κάθε χ>0 και f(1)=1
a)Ν.δ.ο η f' είναι συνεχής στο (0,+απειρο) και να βρεθει η f
b)ν.δ.ο (x-1/2x^2)f(x)< ολοκλήρωμα απο 1 εως χ του f(t)/2t^2 dt<x-1/2,x>1
c)Να βρεθεί η F(x)=ολοκλήρωμα από 1 εως χ του (1+(1/2t^2) f(t)dt,x>1
Ζήτημα 4ο, Α' Δέσμη 1998
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 15 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 224 μέλη διάβασαν αυτό το θέμα:
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.