gersi
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
μια βοηθεια
δινονται δυο συναρτησεις f,g : [ α,β] -> R . αν g(x) >0 για καθε χ που ανηκει στο [α,β] να δειξετε οτι υπαρχει ενα τουλαχιστον ξ που ανηκει στο [ α,β] τετοιο ωστε :
∫f(x)g(x)dx = f(ξ) * ∫g(x) dx .(ακρα ολοκληρωσης α,β)
Η άσκηση είναι ακριβώς έτσι γραμμένη? Αναφέρει τίποτα για συνέχεια?
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
georgekok
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
IasonasM
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
f συνεχής στο [a,b] άρα παίρνει μέγιστη και ελάχιστη τιμή (έστω M,m αντίστοιχα). Λύσε την σχέση που θες να δείξει ως προς f(ξ) και χρησιμοποιώντας το m <= f(x) <= M δείξε ότι το για το πηλίκο Π των ολοκληρωμάτων ισχύει m <= Π <= M. άρα από το Θ.Ε.Τ. (και αφού f συνεχής στο [a,b]) υπάρχει ξ ε [α,β] : f(ξ)= Π
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
DumeNuke
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
a+b-x=x
Αντ' αυτού, θεωρείς ότι x=a+b-u (με το u ως μεταβλητή) και συνεχίζεις.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
georgekok
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
gersi
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
konna96
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 856924
Επισκέπτης
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Filippos14
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Παιδες να ρωτησω αξιζει να παλευω να λυνω ασκησεις απ το Στεργιου ενω στο φροντ. δεν εχουμε κανει μεχρι στιγμης παρομοιες;
Εννοειτε πως ναι,οτι προερχεται απο προσωπικη ενασχοληση(ειδικα στα μαθηματα) εχει καλα αποτελεσματα
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
gersi
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
α) Να αποδειξετε οτι
β)Να βρειτε τον τυπο της συναρτησης
Στο ερωτημα β πως δουλευουμε;
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Εστω συναρτησηη οποια ειναι παραγωγισιμη με
και τετοια ωστε
για καθε
α) Να αποδειξετε οτι
για καθε
β)Να βρειτε τον τυπο της συναρτησης.
Στο ερωτημα β πως δουλευουμε;
Παραγωγίζω τη σχέση.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Filippos14
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Κανεις παραγοντικη στο ολοκληρωμα της σχεσης και αντικαθιστας το αποτελεσμα στιν 1η σχεση,καταληγεις μετα απο πραξεις εδω :Εστω συναρτησηη οποια ειναι παραγωγισιμη με
και τετοια ωστε
για καθε
α) Να αποδειξετε οτι
για καθε
β)Να βρειτε τον τυπο της συναρτησης.
Στο ερωτημα β πως δουλευουμε;
f'(x)=f(x)*ln[f(x)],f(x)>0 =>
f'(x)/f(x)=ln[f(x)] =>
[lnf(x)]'=lnf(x) klp klp
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
meletis96
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
millie_M
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
f(x)= ολοκληρωμα απο 1 εως χ του χlntdt . θελει να βρω τον τύπο της f. πρέπει να βρω την f'(x) ή να κάνω ολοκλήρωση κατα παράγοντες?
nai kata paragontes
aplws sto telos [x*x*lnt]apo 1 ews x + [x*1/t] apo 1 ews x+ c
den xerw pali . Dokimase to ligo kai as pei kai kanenas allos ti lisi tou
Elpizw na voithaw
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
VeeM
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
f(x)= ολοκληρωμα απο 1 εως χ του χlntdt . θελει να βρω τον τύπο της f. πρέπει να βρω την f'(x) ή να κάνω ολοκλήρωση κατα παράγοντες?
Ειναι το ιδιο πραγμα. Αν κανεις κατα παραγοντες πρεπει πρωτα να πεταξεις εξω απο το ολοκληρωμα το x αφου το ολοκλ ειναι ως προς dt. Το ιδιο ισχυει και με την f'. Δλδ για να παραγωγησεις πρεπει να πεταξεις εξω το χ και μενει :
f'(x)= xlnx + ολοκληρωμα πο 1 εως x του lnt dt που το βρισκεις κατα παραγοντες.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
DumeNuke
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
f(x)= ολοκληρωμα απο 1 εως χ του χlntdt . θελει να βρω τον τύπο της f. πρέπει να βρω την f'(x) ή να κάνω ολοκλήρωση κατα παράγοντες?
Αφού ολοκληρώνεις ως προς dt, το χ βγαίνει έξω από το ολοκλήρωμα και βρίσκεις Ολοκλήρωμα 1 εως χ (lntdt). Το ολοκλήρωμα της λογαριθμικής δηλαδή, το οποίο είναι t(lnt-1).
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
nPb
Επιφανές μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
αν
Aν σε μπερδεύει το x και το θεωρείς υποσυνείδητα ανεξάρτητη μεταβλητή, βάλε άλλο γράμμα π.χ. c, ω, ξ,...Το f(κάτι) είναι τιμή της f στο κάτι.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
a)Ν.δ.ο η f' είναι συνεχής στο (0,+απειρο) και να βρεθει η f
b)ν.δ.ο (x-1/2x^2)f(x)< ολοκλήρωμα απο 1 εως χ του f(t)/2t^2 dt<x-1/2,x>1
c)Να βρεθεί η F(x)=ολοκλήρωμα από 1 εως χ του (1+(1/2t^2) f(t)dt,x>1
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Δίνεται η παραγωγίσιμη f: (0,+apeiro)---->R για την οποία ισχύουν: f(x)>0 για κάθε χ>0...f'(x)+2xf(x)=0 για κάθε χ>0 και f(1)=1
a)Ν.δ.ο η f' είναι συνεχής στο (0,+απειρο) και να βρεθει η f
b)ν.δ.ο (x-1/2x^2)f(x)< ολοκλήρωμα απο 1 εως χ του f(t)/2t^2 dt<x-1/2,x>1
c)Να βρεθεί η F(x)=ολοκλήρωμα από 1 εως χ του (1+(1/2t^2) f(t)dt,x>1
Ζήτημα 4ο, Α' Δέσμη 1998
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 12 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 226 μέλη διάβασαν αυτό το θέμα:
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.