Civilara
Περιβόητο μέλος
Civilara, η λυση που δινεις στο γ ερωτημα δεν στεκει. Δεν ξερεις οτι η f ειναι παραγωγισιμη.
Σωστό ότι δεν γνωρίζουμε αν η f είναι παραγωγίσιμη. Θεώρησα κάπου ότι είναι παραγωγίσιμη;
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Johny4Life
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
Δεν δέχομαι υποδείξεις με τέτοιο υφάκι.
Έχει νόημα και μάλιστα μεγάλο. Κάθε λύση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
Κανείς δεν είναι υποχρεωμένος να διαβάσει τις λύσεις σου όταν εσύ δεν είσαι διατεθειμένος να τον βοηθήσεις να τις καταλάβει. Καλό θα ήταν λοιπόν να το καταδεχτείς, αν γράφεις τις λύσεις για τους άλλους και όχι για τον εαυτό σου.
Άσχετα απο το αν η λύση είναι σωστή, σκοπός του thread είναι και να την καταλάβει όποιος πάει να δώσει το μάθημα των Μαθηματικών Κατεύθυσης και θέλει να ψαχτεί με παραπάνω ασκήσεις. Βάζοντας μια λύση με στοιχεία εκτός ύλης δε βοηθάει σε τίποτα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Johny4Life
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
panabarbes
Εκκολαπτόμενο μέλος
Θέλουμε να δείξουμε ότι f(x)>2 δηλαδή f(x)-2>0. Θεωρούμε την συνάρτηση g(x)=f(x)-2, xεR. Αρκεί να δείξουμε σε πρώτη φάση ότι η g διατηρεί πρόσημο και, στη συνέχεια, ότι το πρόσημο της είναι θετικό.
1)Η g είναι συνεχής στο R, εφόσον η f είναι συνεχής στο R
2)g(x) (διάφορο του) 0, διότι αν υπήρχε x0 τέτοιο, ώστε g(x0)=0 <=> f(x0)-2=0 <=> f(x0)=2, τότε και f²(x0)=4, άτοπο από υπόθεση.
Άρα, σύμφωνα με συνέπεια του θ. Bolzano, η συνάρτηση g διατηρεί πρόσημο στο R.
Επιπλέον, από ερώτημα (α) έχουμε: f(0)>/4 <=> f(0) - 2 >/ 2 <=> g(0) >/2 >0 <=> g(0)>0.
Επομένως, g(x)>0 <=> f(x)>2, για κάθε xεR
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
panabarbes
Εκκολαπτόμενο μέλος
.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Δίνεται μιγαδικός z για τον οποίο ισχύει: . Να βρείτε το όριο:
.
Έστω z=X+Yi, όπου X,Y ανήκουν R. Έχουμε:
|2z-3i|=|2X+(2Y-3)i|=SQRT[((2X)^2)+((2Y-3)^2)]
|6z-i|=|6X+(6Y-1)i|=SQRT[((6X)^2)+((6Y-1)^2)]
|2z-3i|>|6z-i| => |2z-3i|^2>|6z-i|^2 => ((2X)^2)+((2Y-3)^2)>((6X)^2)+((6Y-1)^2) => 4(X^2)+4(Y^2)-12Y+9>36(X^2)+36(Y^2)-12Y+1 =>
=> 32(X^2)+32(Y^2)<8 => (X^2)+(Y^2)<1/4
Άρα ο γεωμετρικός τόπος των εικόνων Μ(z) είναι κυκλικός δίσκος με κέντρο την αρχή των αξόνων Ο(0,0) και ακτίνα ρ=1/2 χωρίς τα σημεία της περιφέρειας του κυκλικού δίσκου. Οι παραμετρικές εξισώσεις του κυκλικού δίσκου είναι οι εξής:
X=rσυνφ
Y=rημφ
όπου 0<=r<1/2 και 0<=φ<2π
Άρα z=X+Yi => z=rσυνφ+(rημφ)i => z=r(συνφ+iημφ)
|z|=SQRT((X^2)+(Y^2))=r => 0<=|z|<1/2
(α) Θεωρούμε την συνάρτηση f(x)=(|z|^x)+(e^(1-x)). Για να ορίζεται η f για κάθε x ανήκει R πρέπει:
|z| διάφορο 0 => z διάφορο 0 => 0<|z|<1/2
Αν θέσουμε |z|=1/R τότε 0<1/R<1/2 => R>2
Η συνάρτηση f γράφεται ισοδύναμα f(x)=((1/R)^x)+(e^(1-x))=(R^(-x))+e*(e^(-x))
Θέτουμε u=-x
lim(x->+oo)(-x)=-oo
lim(x->+oo)(R^(-x))=lim(u->-oo)(R^u)=0
lim(x->+oo)(e^(-x))=lim(u->-oo)(e^u)=0
Άρα lim(x->-oo)f(x)=0+e*0=0
(β) Αν z=0 τότε η f εκφυλίζεται στην f(x)=e^(1-x)=e*(e^(-x)), x ανήκει R
lim(x->+oo)(e^(-x))=lim(u->-oo)(e^u)=0
lim(x->+oo)f(x)=e*0=0
Επομένως σε κάθε περίπτωση είναι lim(x->+oo)f(x)=0
Αν θέσουμε y=f(x) τότε
lim(x->+oo)lnf(x)=lim(y->0+)lny=-oo
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
i) Nα δείξετε ότι υπάρχει μοναδικό τέτοιο ώστε
ii) Να δείξετε ότι στο
iii) Να βρεθεί το πλήθος των ριζών της εξίσωσης για κάθε τιμή της παραμέτρου
*Το cos δηλώνει το συνημίτονο
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης
ι) g(x)=x^3-cos^2(x) συνεχής στο R σαν πραξεις συνεχων κ παρμ/η
g'(x)=3x^2-2cosx(-sinx)=x^3+sin2x >0 για κάθε x στο [0,π/2]
αρα γν αυξουσα σε αυτό
απο bolzano στο [0,π/2] το ζητουμενο έπεται
ιι) εστω οτι δεν ηταν αυτο το ελαχιστο θα υπηρχε χ0 στο [0,π/2] τετοιο ωστε f(x0)<f(ξ)
<=> x0^3<ξ^3 <=> x0<ξ
και συν^2χ0<συν^2ξ
<=>1-ημ^2χ0<1-ημ^2ξ
<=>ημξ<ημχ0
<=>χ0>ξ
Αντίφαση αρα έχουμε ατοπο αρα το f(ξ) είναι το ελαχιστο στο [0,π/2]
Για το τελευταιο εχω μερικες σκεψεις και οταν τις ολοκληρωσω και στο χαρτι θα δωσω λυση
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Ναι η άσκηση εννοεί ρίζες στο και κακώς δεν το γράφει στην εκφώνηση.στο τελευταιο μήπως εννοεις ριζες στο [0,π/2] ;
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης
...
έχω για χ>ξ <=> χ^3>συν^2χ ( μεσω μονοτονιας της χ^3-συν^2χ)
αρα το μαξ εδω ειναι ο χ^3 οποτε χ^3=λ μοναδικη λυση
χ<ξ το μαξ ειναι συν^2χ=λ που μελετω μονοτονια και για καταρχας ειναι αδυνατη
αν τοτε λογωμονοτονιας γν φθινουσα για την ακριβεια (με παραγωγο ολα αυτα ) εχει μοναδικη λυση
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Από κει και πέρα το πλήθος των ριζών βρίσκεται από τον αριθμό των κοινών σημείων της με την ευθεία . Ένα γράφημα ίσως βοηθήσει
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Θεωρούμε την συνάρτηση .
i) Nα δείξετε ότι υπάρχει μοναδικό τέτοιο ώστε
ii) Να δείξετε ότι στο
iii) Να βρεθεί το πλήθος των ριζών της εξίσωσης για κάθε τιμή της παραμέτρου
*Το cos δηλώνει το συνημίτονο
Για x>1 είναι x^3>1 και -1<=συνx<=1 => |συνx|<=1 => |συνx|^2<=1 => (συνx)^2<=1
Άρα (συνx)^2<=1<x^3. Επομένως για x>1 είναι f(x)=x^3
Για x<0 είναι x^3<0 και 0<=(συνx)^2<=1.
Άρα x^3<0<=(συνx)^2. Επομένως για x<0 είναι f(x)=(συνx)^2.
Μένει να καθοριστεί ο τύπος της f στο διάστημα [0,1].
Θεωρούμε την συνάρτηση g(x)=(x^3)-((συνx)^2), x ανήκει R. Η g είναι συνεχής και παραγωγίσιμη στο R με πρώτη παράγωγο:
g΄(x)=3(x^2)+ημ2x
Για 0<x<π/2 είναι 0<2x<π και επομένως 0<ημ2x<=1. Επειδή x^2>0 και ημ2x>0 για κάθε x ανήκει (0,π/2) τότε είναι g΄(x)>0 για κάθε x ανήκει (0,π/2). Η g είναι συνεχής στο [0,π/2], παραγωγίσιμη στο (0,π/2) και ισχύει g΄(x)>0 για κάθε x στο (0,π/2). Επομένως η g είναι γνησίως αύξουσα στο [0,π/2].
Έχουμε g(0)=-1<0 και g(π/2)=(π^3)/8>0, οπότε g(0)g(π/2)<0. Η g είναι συνεχής στο [0,π/2] και ισχύει g(0)g(π/2)<0. Επομένως σύμφωνα με το θεώρημα Bolzano υπάρχει ξ ανήκει (0,π/2) τέτοιο ώστε g(ξ)=0 => ξ^3=(συνξ)^2 και επειδή η g είναι γνησίως αύξουσα τότε αυτό είναι μοναδικό.
Επίσης έχουμε g(1)=1-((συν1)^2). Επειδή 0<1<π/3 τότε είναι συν(π/3)<συν1<συν0 => 1/2<συν1<1 => 1/4<(συν1)^2<1 =>
=> -1<-((συν1)^2)<-1/4 => 0<1-((συν1)^2)/4 => 0<g(1)/4
Είναι g(0)<0 και g(1)>0. Η g είναι συνεχής στο [0,π/2] και ισχύει g(0)g(1)<0. Επομένως σύμφωνα με το θεώρημα Bolzano υπάρχει x0 ανήκει (0,1) τέτοιο ώστε g(x0)=0 => x0^3=(συνx0)^2 και επειδή η g είναι γνησίως αύξουσα τότε αυτό είναι μοναδικό και ισχύει x0=ξ.
Άρα f(ξ)=ξ^3=(συνξ)^2 όπου 0<ξ<1
Με δεδομένο ότι η g είναι γνησίως αύξουσα στο [0,1] (υποσύνολο του [0,π/2]) έχουμε:
0<=x<ξ => g(x)<g(ξ) => (x^3)-((συνx)^2)<0 => (x^3)<(συνx)^2 => Άρα f(x)= (συνx)^2 για 0<=x<ξ
ξ<x<=1 => g(ξ)<g(x) => 0<(x^3)-((συνx)^2) => (x^3)>(συνx)^2 => Άρα f(x)= x^3 για ξ<x<=1
Συνοψίζοντας
f(x)=(συνx)^2, x<ξ
f(x)=(x^3), x>ξ
f(ξ)=ξ^3=(συνξ)^2
Η συνάρτηση f είναι συνεχής στα διαστήματα (-οο,ξ) και (ξ,+οο). Στο σημείο ξ έχουμε:
lim(x->ξ-)f(x)=lim(x->ξ-)((συνx)^2)=(συνξ)^2=f(ξ)
lim(x->ξ+)f(x)=lim(x->ξ-)(x^3)=ξ^3=f(ξ)
Επειδή lim(x->ξ-)f(x)=lim(x->ξ+)f(x)=f(ξ) τότε η f είναι συνεχής στο ξ. Επομένως η f είναι συνεχής στο R.
Η f είναι παραγωγίσιμη στο (-οο,ξ) με πρώτη παράγωγο f΄(x)=-ημ2x. Για 0<x<ξ<1<π/2 είναι 0<2x<2ξ<2<π, οπότε ημ2x>0 => -ημ2x<0 =>
=> f΄(x)<0 για κάθε x ανήκει (0,ξ).
H f είναι παραγωγίσιμη στο (ξ,+οο) με πρώτη παράγωγο f΄(x)=3(x^2). Για 0<ξ<x είναι x^2>0 => f΄(x)>0.
Άρα f΄(x)>0 για κάθε x στο (ξ, +οο)
Η f είναι συνεχής στο [0,ξ], παραγωγίσιμη στο (0,ξ) και ισχύει f΄(x)<0 για κάθε x στο (0,ξ). Επομένως η f είναι γνησίως φθίνουσα στο [0,ξ].
Η f είναι συνεχής στο [ξ,+οο), παραγωγίσιμη στο (ξ,+οο) και ισχύει f΄(x)<0 για κάθε x στο (ξ,+οο). Επομένως η f είναι γνησίως φθίνουσα στο [ξ,+οο).
Επειδή η f είναι συνεχής στο [0,π/2], γνησίως φθίνουσα στο [0,ξ] και γνησίως αύξουσα στο [ξ,π/2] (ως υποσύνολο του [ξ,+οο)) τότε παρουσιάζει τοπικό ελάχιστο στο ξ με τιμή: minf(x)=f(ξ)
Άρα f(ξ)=minf(x) στο [0,π/2]
Επειδή 0<ξ<1 είναι 0<ξ^3<1 => 0<f(ξ)<1 όπου f(ξ)=ξ^3=(συνξ)^2
Έχουμε lim(x->+oo)f(x)=lim(x->+oo)(x^3)=+oo
Για κάθε x ανήκει (-οο,ξ) είναι f(x)=(συνx)^2 και ισχύει 0<=(συνχ)^2<=1. Επομένως η εικόνα του (-οο,ξ) είναι το f((-oo,ξ))=[0,1]
Επειδή η f είναι συνεχής και γνησίως αύξουσα στο (ξ,+οο) τότε f((ξ,+οο))=(f(ξ),+οο)
Επίσης το 0 είναι ολικό ελάχιστο της f, δηλαδή f(x)>=0 για κάθε x ανήκει R.
Θα αναζητηθούν οι λύσεις της f(x)=λ στο R όπου 0<=λ<=(π^3)/8
(α) Θα αναζητηθούν οι λύσεις της εξίσωσης f(x)=λ στο διάστημα (-οο,ξ) όπου f(x)=(συνx)^2.
(i) Επειδή 0<=(συνx)^2<=1 για κάθε x<ξ τότε για 1<λ<=(π^3)/8 η εξίσωση f(x)=λ δεν έχει λύσεις
(ii) Αν 0<=λ<=1 τότε η εξίσωση (συνx)^2=λ έχει λύσεις. Έστω 0<=φ<=π/2 με συνφ=SQRT(λ). Έχουμε
(συνx)^2=λ => |συνx|=SQRT(λ) => συνx=SQRT(λ) ή συνx=-SQRT(λ) => συνx=συνφ ή συνx=-συνφ =>
=> συνx=συνφ ή συνx=συν(π-φ)
Για συνx=συνφ προκύπτει x=2απ+φ ή x=2βπ-φ όπου α,β ανήκουν Z
Για συνx=συν(π-φ) προκύπτει x=2γπ+π-φ ή x=2δπ-π+φ όπου γ, δ ανήκουν Z
Επειδή x<ξ τότε για τους ακέραιους α, β, γ, δ ισχύουν οι εξής περιορισμοί:
2απ+φ<ξ => α<(ξ-φ)/(2π)
2βπ-φ<ξ => β<(ξ+φ)/(2π)
2γπ+π-φ<ξ => γ<(ξ+φ-π)/(2π)
2δπ-π+φ<ξ => δ<(ξ-φ+π)/(2π)
(β) Θα αναζητηθούν οι λύσεις της εξίσωσης f(x)=λ στο διάστημα [ξ,+οο) όπου f(x)=x^3.
f(x)=λ => x^3=λ => x=λ^(1/3)
Πρέπει x>=ξ => λ^(1/3)>=ξ => λ>=ξ^3 => λ>=f(ξ)
Άρα αν 0<=λ<ξ^3 τότε η εξίσωση f(x)=λ δεν έχει λύσεις στο [ξ,+οο)
Αν ξ^3<λ<=(π^3)/8 τότε έχει μοναδική λύση την x=λ^(1/3)
Συνεπώς καταλήγουμε στα εξής συμπεράσματα:
(α) Αν 0<=λ<ξ^3 τότε τα x=2απ+φ, x=2βπ-φ, x=2γπ+π-φ και x=2δπ-π+φ είναι λύσεις της εξίσωσης f(x)=λ όπου συνφ=λ^(1/2) με 0<=φ<=π/2 και για τους ακεραίους α, β, γ και δ ισχύουν οι περιορισμοί:
α<(ξ-φ)/(2π)
β<(ξ+φ)/(2π)
γ<(ξ+φ-π)/(2π)
δ<(ξ-φ+π)/(2π)
Άρα σε αυτήν την περίπτωση η εξίσωση f(x)=λ έχει άπειρες πραγματικές λύσεις.
(β) Αν ξ^3<=λ<=1 τότε τα x=2απ+φ, x=2βπ-φ, x=2γπ+π-φ, x=2δπ-π+φ και x=λ^(1/3) είναι λύσεις της εξίσωσης f(x)=λ όπου συνφ=λ^(1/2) με 0<=φ<=π/2 και για τους ακεραίους α, β, γ και δ ισχύουν οι περιορισμοί:
α<(ξ-φ)/(2π)
β<(ξ+φ)/(2π)
γ<(ξ+φ-π)/(2π)
δ<(ξ-φ+π)/(2π)
Άρα σε αυτήν την περίπτωση η εξίσωση f(x)=λ έχει άπειρες πραγματικές λύσεις.
(γ) Αν 1<λ<=(π^3)/8 τότε η εξίσωση f(x)=λ έχει μοναδική λύση την x=λ^(1/3)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 5 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 286 μέλη διάβασαν αυτό το θέμα:
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- ggl
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- nearos
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.