giannis19
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
dimitris001
Τιμώμενο Μέλος
Το άθροισμα δύο άρρητων δεν είναι κατ' ανάγκη άρρητος γιατί πχ . Νομίζω όμως ότι βγαίνει με άτοπο.
Γενικά αν α και β τυχαίοι άρρητοι, τότε α+β ΔΕΝ γνωρίζουμε αν είναι το άθροισμα άρρητος ή όχι!(παράδειγμα αυτο που αναφέρει πιο πάνω ο styt_geia )Το είχα ρωτήσει αυτό που λες , στο μαθηματικό ,σε έναν καθηγητή και μου είχε απαντήσει άρρητος + άρρητος = άρρητος. Δυο αρθμοι που εχουν απειρα δεκαδικα ψηφια μπορουν να δωσουν, αθροισματικα ,εναν αριθμο με πεπερασμένο πλήθος ?
ΑΛΛΑ στην περίπτωση μας που έχουμε συγκεκριμένους άρρητους αριθμούς (ρίζα 2, ρίζα 3) το άθροισμα είναι άρρητος!
Ελπίζω να καταλάβατε τι θέλω να πω...
Good job, man!Αρχικά, αποδεικνύω ότι ριζα6 αρρητος, με τον τρόπο του Δημήτρη.
Έστω τώρα, όπως υπέδειξε ο styt, πως ριζα2+ριζα3 ρητός.
Τότε και το τετράγωνο του θα είναι ρητος.
Επομένως (2+3+2ριζα6) ρητός.
Άτοπο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
sokratis lyras
Νεοφερμένος
Έστω παραγωγίσιμη στο με . Δείξτε ότι
Με κάποιες επιφυλάξεις.Με rolle στο προκύπτει ρίζα της f' και άρα της f,έστω η .Mε rolle στο έχουμε κ' άλλη ρίζα της f' και άρα της f.Eπαγωγικά προκύπτει το ζητούμενο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Αμα φερω το f '(ξ)^2 στο αριστερο μελος, διαιρεσω με f '(ξ) θεωρησω συναρτηση h(x)= lnf '(x) - f (x), κανω rolle στο (α,β) ειναι σωστο ? το αποτελεσμα βγαινω απλα θα χρειαστει το f'(ξ) να ειναι διαφορετικο του μηδενος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Rolle στηνθελω βοηθεια στην ασκηση 57 σελ 35 του μπαρλα. Λεει οτι η f ειναι δυο φορες παραγωγισιμη με f(a)=f(b) και f ΄(a)=f '(b). να δειξω οτι υπαρχει τουλαχιστον ενα ξ που ανηκει στο (α,β) τετοιο ωστε f ''(ξ)=f '(ξ)^2
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Rolle στην
ποσο μου την δινουν οι στημενες ασκησεις. Ευχαριστω παντως
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Solmyr
Δραστήριο μέλος
Μία βδομάδα πέρασε. Δεν το παίρνει το ποτάμι; . Ακολουθεί μία μέτριας δυσκολίας με συναρτησιακή μήπως και ανέβει λίγο το ενδιαφέρον.
Μία συνάρτηση έχει την ιδιότητα
α) Να αποδείξετε ότι
β) Να αποδείξετε ότι η είναι αντιστρέψιμη
γ) Να αποδείξετε ότι η έχει σύνολο τιμών το
δ) Να βρείτε τον τύπο της συνάρτησης.
Προσπαθήστε να διατηρήσετε την σειρά των ερωτημάτων. Η άσκηση είναι από εδώ σελ 37
Όποτε μπορείς βάλε τη λύση της συναρτησιακής άσκησης.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Έστω παραγωγίσιμη στο με . Δείξτε ότι
Θεωρούμε την συνάρτηση g(x)=(x-a)(x-b)=(x^2)-(a+b)x+ab, x ανήκει Dg=R. Η g είναι συνεχής στο R ως πολυωνυμική. Για την g ισχύει g(a)=g(b)=0 και g(x)<0 για a<x<b.
Θεωρούμε την συνάρτηση h(x)=1/g(x)=1/[(x-a)(x-b)] με πεδίο ορισμού Dh=(-oo,a)U(a,b)U(b,+oo). Η h είναι συνεχής στο Dh ως ρητή. Στη συνέχεια αναζητούμε πραγματικούς αριθμούς Α, Β έτσι ώστε:
h(x)=[A/(x-a)]+[B/(x-b)] για κάθε x ανήκει Dh.
Έχουμε:
1/[(x-a)(x-b)]=[A/(x-a)]+[B/(x-b)] <=> A(x-b)+B(x-a)=1 <=> (A+B)x+(-Ab-Ba)=1
Για να ισχύει η παραπάνω σχέση για κάθε x ανήκει Dh πρέπει να ισχύουν οι εξής:
A+B=0 (1)
-Ab-Ba=1 (2)
Από την (1) έχουμε:
B=-A (3)
Αντικαθιστώντας στην (2) έχουμε:
-Ab+Aa=1 <=> A(a-b)=1 <=> A=1/(a-b) <=> A=-1/(b-a)
B=-A => B=1/(b-a)
Επομένως
h(x)=[-1/(b-a)][1/(x-a)]+[1/(b-a)][1/(x-b)]=[1/(b-a)]{[1/(x-b)]-[1/(x-a)]}, x ανήκει Dh
Στη συνέχεια θα προσδιοριστεί το αόριστο ολοκλήρωμα της h στο διάστημα Δ=(a,b). Έχουμε
Θεωρούμε την συνάρτηση
με πεδίο ορισμού (α,β). Η H είναι παραγωγίσιμη και αρχική της h στο (α,β), δηλαδή:
H΄(x)=h(x) για κάθε x ανήκει (α,β)
Για κάθε x ανήκει [α,β] ισχύει f(x)=g(x)f΄(x). Επειδή g(a)=g(b)=0 έχουμε f(a)=g(a)f΄(a)=0 και f(b)=g(b)f΄(b)=0. Στη συνέχεια θα προσδιοριστεί ο τύπος της f στο (a,b). Για κάθε x ανήκει (α,β) ισχύει g(x)<0 οπότε έχουμε:
f(x)=g(x)f΄(x) <=> f(x)/g(x)=f΄(x) <=> f(x)h(x)=f΄(x) <=> f(x)H΄(x)=f΄(x) <=> f΄(x)-f(x)H΄(x)=0
Θεωρούμε την συνάρτηση F(x)=f(x)[e^(-H(x))], x ανήκει (a,b). Επειδή οι f και H είναι παραγωγίσιμες στο (a,b), οπότε η F είναι παραγωγίσιμη στο (a,b), οπότε και συνεχής στο (α,β), με παράγωγο:
F΄(x)=f΄(x)[e^(-H(x)]-f(x)H΄(x)[e^(-H(x))]=[f΄(x)-f(x)H΄(x)][e^(-H(x))]=0*[e^(-H(x))]=0
Η F είναι συνεχής και παραγωγίσιμη στο (a,b) και ισχύει F΄(x)=0 για κάθε x ανήκει (α,β). Επομένως υπάρχει σταθερά c έτσι ώστε να ισχύει F(x)=0 για κάθε x ανήκει (a,b). Άρα:
F(x)=c <=> f(x)[e^(-H(x))]=c <=> f(x)=c[e^H(x)] <=> f(x)=c{[-(x-b)/(x-a)]^[1/(b-a)]}
Επομένως f(a)=f(b)=0 και f(x)=c{[-(x-b)/(x-a)]^[1/(b-a)]} για x ανήκει (a,b).
Η f είναι παραγωγίσιμη στο (a,b) με πρώτη παράγωγο:
f΄(x)=-[c/((x-b)^2)]{[-(x-b)/(x-a)]^[(a-b+1)/(b-a)]}
Από την εκφώνηση γνωρίζουμε ότι η f είναι παραγωγίσιμη στο [a,b]. Επομένως η f είναι συνεχής στο [a,b] και παραγωγίσιμη στο (a,b).
Η f είναι συνεχής στο [a,b], παραγωγίσιμη στο (a,b) και ισχύει f(a)=f(b). Επομένως σύμφωνα με το θεώρημα του Rolle υπάρχει τουλάχιστον ένα ξ ανήκει (a,b) τέτοιο ώστε f΄(ξ)=0. Έχουμε
f΄(ξ)=-[c/((ξ-b)^2)]{[-(ξ-b)/(ξ-a)]^[(a-b+1)/(b-a)]}
Συνεπώς
f΄(ξ)=0 <=> -[c/((ξ-b)^2)]{[-(ξ-b)/(ξ-a)]^[(a-b+1)/(b-a)]}=0 <=> c=0
Άρα f(x)=0 για κάθε x ανήκει (a,b) και επειδή f(a)=f(b)=0 τότε f(x)=0 για κάθε x ανήκει [a,b].
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Ναι.Μία συνάρτηση έχει την ιδιότητα
α) Να αποδείξετε ότι
β) Να αποδείξετε ότι η είναι αντιστρέψιμη
γ) Να αποδείξετε ότι η έχει σύνολο τιμών το
δ) Να βρείτε τον τύπο της συνάρτησης.
α) Για στην παίρνουμε
Για στην παίρνουμε . Από (1) και (2) παίρνω
β) Για στην με βάση το προηγούμενο ερώτημα παίρνουμε . Έτσι για με έχουμε άρα η f είναι 1-1 και άρα αντιστρέψιμη.
γ) Αρκεί να δείξω ότι για κάθε υπάρχει με . Έστω λοιπόν αυθαίρετο . Για λόγω της (3) έχουμε οπότε πράγματι
δ) Για στην παίρνουμε και αφού η f είναι 1-1 όπως δείξαμε στο β) έχουμε τελικά που επαληθεύει την
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Ψάχνοντας τυχαία σε κάτι παλιά μηνύματα είδα ότι η τελευταία άσκηση έχει λυθεί εδώ με άλλον τρόπο. Οπότε τώρα έχουμε και τις δύο λύσεις.Έχω υπ' όψιν μου δύο τρόπους. Ο ένας βασίζεται στο θεώρημα μέγιστης και ελάχιστης τιμής. Ο άλλος περιλαμβάνει εύρεση αρχικής συνάρτησης.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
Επίσης μία με την οποία ασχοληθήκαμε εγώ κι ένας συμμαθητής μου σήμερα: Να υπολογιστεί το (ενν. ν φυσικός). Εύκολο είναι να βρεθεί αναδρομικός, το πιο 'ωραίο' είναι να βρεθεί κλειστή μορφή του χωρίς ολοκληρώματα μέσα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
sokratis lyras
Νεοφερμένος
Ένα γρήγορο θεματάκι που μου άρεσε: Έστω παραγωγίσιμη και κυρτή στο , . Νδο. για κάθε θετικό x.
Επίσης μία με την οποία ασχοληθήκαμε εγώ κι ένας συμμαθητής μου σήμερα: Να υπολογιστεί το (ενν. ν φυσικός). Εύκολο είναι να βρεθεί αναδρομικός, το πιο 'ωραίο' είναι να βρεθεί κλειστή μορφή του χωρίς ολοκληρώματα μέσα.
Η είναι γνησίως αύξουσα λόγω της κυρτότητας.
Οπότε για θετικά χ ,και για κ=3/4 προκύπτει το ζητούμενο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
1) Βρείτε μια συνάρτηση που να ικανοποιεί τη σχέση για .
2) Βρείτε μια συνάρτηση που να ικανοποιεί τη σχέση (πέρα από τη μηδενική συνάρτηση)
3) Αν η f είναι παραγωγίσιμη, να βρείτε όλες τις συναρτήσεις-λύσεις της εξίσωσης
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Alan
Δραστήριο μέλος
Να δείξετε ότι ισχύει : για κάθε x e R και για οποιαδήποτε συνάρτηση h:R->R
Έτοιμο!
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
κατερω
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Alan
Δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 4 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 286 μέλη διάβασαν αυτό το θέμα:
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- ggl
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- nearos
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.