Ασκηση 4 (ΑΠΑΝΤΗΣΗ ΣΤΟ α ΕΡΩΤΗΜΑ)
Η f είναι παργωγίσιμη αφού η (t+1)/(t(e^f(t)+1)) είναι συνεχής ως πράξεις συνεχών άρα αφού το εσωτερικό του ολοκληρώματος είναι συνεχής συνάτηση τότε και η f πραγωγίσιμη!
Ας παραγωγίσουμε τώρα την f: f '(x)= (x+1)/(x(e^f(x)+1))
Σπάω το κλάσμα: f '(x)= x/(x(e^f(x)+1)) + 1/(x(e^f(x)+1))
Απαλύφω το x από το 1ο κλάσμα και η κατάσταση εχει ως εξής: f '(x)= 1/(e^f(x)+1) + 1/(x(e^f(x)+1))
Πολλαπλασιάζω με το e^f(x)+1: f '(x)*(e^f(x)+1)= 1 + 1/x
Κάνω την επιμερηστικη: f '(x)*e^f(x) + f '(x) = 1 +1/x
Ολοκληρώνω αόριστα και στα 2 μέλη: S[f '(x)*e^f(x) + f '(x)]dx = S[1 + 1/x]dx
Σπάω τα ολοκληρώματα σύμφωνα με τις ιδιότητες: S[f '(x)*e^f(x)]dx + S[f '(x)]dx = S[1]dx + S[1/x]dx
Παρατηρώ πως η συνάρτηση μέσα στο 1ο ολοκήρωμα είναι η παράγωγος της e^f(x) , στο 2ο ολοκλήρωμα είναι η παράγωγος της f(x) , στο 2ο μέλος η παράγουσα του 1 είναι το x και η παράγουσα του 1/χ είναι το lnx
Άρα καταλήγω στην σχέση που θέλω να αποδείξω: e^f(x) + f(x) = x + lnx
Απάντησα μόνο το α γτ για να τα γράψω εδώ μου παίρνει πολλή ώρα και δεν ήθελα να με προλάβει άλλος...

Εργάζομαι τώρα και για τα υπόλοιπα!
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.