coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Να σημειώσω ότι οι ασκήσεις που ανεβάζω εχουν αξιολογηθεί ανάλογα με τη δυσκολία τους και έχουν ταξινομηθεί σε 2ο,3ο,4ο Θέμα (Πανελληνίων). Οι 2 πρώτες ήταν 4ο Θέμα. Ανεβάζω μια για 3ο θέμα.
Άσκηση 3
Δίνονται οι συναρτήσεις f,g:[0,1]->R για τις οποίες ισχύουν τα εξής:
- Η συνάρτηση f είναι συνεχής στο πεδίο ορισμού της με
και για κάθε χε[0,1] ισχύει
β) Να αποδείξετε ότι υπάρχει
γ) Αν επιπλέον η συνάρτηση f είναι παραγωγίσιμη στο [0,1] να δείξετε ότι υπάρχει
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Ναι σωστός. Το κοίταξα βιαστικά.
Να σημειώσω ότι οι ασκήσεις που ανεβάζω εχουν αξιολογηθεί ανάλογα με τη δυσκολία τους και έχουν ταξινομηθεί σε 2ο,3ο,4ο Θέμα (Πανελληνίων). Οι 2 πρώτες ήταν 4ο Θέμα. Ανεβάζω μια για 3ο θέμα.
Άσκηση 3
Δίνονται οι συναρτήσεις f,g:[0,1]->R για τις οποίες ισχύουν τα εξής:
α) Να αποδείξετε ότη η ευθεία y=3 τέμνει τη γραφική παράσταση της g σε ένα τουλάχιστον σημείο
- Η συνάρτηση f είναι συνεχής στο πεδίο ορισμού της με
και για κάθε χε[0,1] ισχύει
με
β) Να αποδείξετε ότι υπάρχει
γ) Αν επιπλέον η συνάρτηση f είναι παραγωγίσιμη στο [0,1] να δείξετε ότι υπάρχει
a)bolzano d(x)=g(x)-3
b)Ln στην σχεση και θεωρημα μεγιστης ελαχιστης τιμης
g) ΘΜΤ στο [0,1] για την g
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
riemann80
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Metal-Militiaman
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
John_Megadeth
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
riemann80
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Θεωρώ h(x)=f(x)-x , xε[α,β]Εστωμε
,
γνησιως φθινουσα και
. Δειξτε οτι υπαρχει
τετοιο ωστε
.
h(a)=f(a)-a=b-a>0
h(b)=f(b)-b=a-b<0
Άρα h(a)h(b)<0
Από Bolzano υπάρχει
Έστω
Tότε
- Για
(άτοπο)
- Ομοίως στην άλλη περίπτωση
Τελικά
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
John_Megadeth
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
jimmy007
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Eπίσης, αντί να πας με άτομο για να δείξεις ότι g(l)=l μπορείς να κάνεις το εξής:
Η h(x)=f(x)-x είναι γν. φθίνουσα(το αποδεικνύεις σύμφωνα με τον ορισμό, δηλαδή για a=<χ1<χ2<=b ισχύει h(x1)>h(x2)). Oπότε η h είναι 1-1.
Βάζεις στην αρχική σχέση όπου χ το l.
Αρα ισχύει fog(l)=g(l), άρα h(g(l))=O=h(l). Άρα g(l)=l, επειδή h 1-1.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Adam el único
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Adam el único
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σκεψου το ως 2 συναρτησεις (ισες παραγωγοι αρα διαφερουν κατα c το οποιο πρεπει να δειξεις οτι ειναι μηδεν )
Μ'άρεσε..ευχαριστώ φίλε
![yahoo :yahoo: :yahoo:](https://www.e-steki.gr/images/smilies/yahoo.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αν δεν κάνω λάθος είναι από τις γενικές του σχολικού.. Βγαίνει και με παραγοντικήΑρχική Δημοσίευση από Adam el único;2251820:Παιδιά μια ασκησούλα που με παίδεψε αρκετά και τελικά άκρη δεν έβγαλα..να αποδείξετε την παρακάτω ισότητα:\int_{0}^{x}(x-u)f(u)du=\int_{0}^{x}(\int_{0}^{u}f(t)dt)du
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
jimmy007
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
να υπολογισετε το ολοκληρωμα
![]()
Για να ορίζεται το ολοκλήρωμα δεν πρέπει η συνάρτηση ln(sinx) να ορίζεται και στο 0???
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Έστω η συνεχής συνάρτηση
α) Να αποδείξετε ότι για κάθε χ>0 ισχύει
β) Να αποδείξετε ότι
γ) Να βρείτε το μέγιστο της συνάρτησης
δ) Αν
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Συγκαταβατικό :/: :/:](https://www.e-steki.gr/images/smilies/condescending.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kostaspotter
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Η f είναι παργωγίσιμη αφού η (t+1)/(t(e^f(t)+1)) είναι συνεχής ως πράξεις συνεχών άρα αφού το εσωτερικό του ολοκληρώματος είναι συνεχής συνάτηση τότε και η f πραγωγίσιμη!
Ας παραγωγίσουμε τώρα την f: f '(x)= (x+1)/(x(e^f(x)+1))
Σπάω το κλάσμα: f '(x)= x/(x(e^f(x)+1)) + 1/(x(e^f(x)+1))
Απαλύφω το x από το 1ο κλάσμα και η κατάσταση εχει ως εξής: f '(x)= 1/(e^f(x)+1) + 1/(x(e^f(x)+1))
Πολλαπλασιάζω με το e^f(x)+1: f '(x)*(e^f(x)+1)= 1 + 1/x
Κάνω την επιμερηστικη: f '(x)*e^f(x) + f '(x) = 1 +1/x
Ολοκληρώνω αόριστα και στα 2 μέλη: S[f '(x)*e^f(x) + f '(x)]dx = S[1 + 1/x]dx
Σπάω τα ολοκληρώματα σύμφωνα με τις ιδιότητες: S[f '(x)*e^f(x)]dx + S[f '(x)]dx = S[1]dx + S[1/x]dx
Παρατηρώ πως η συνάρτηση μέσα στο 1ο ολοκήρωμα είναι η παράγωγος της e^f(x) , στο 2ο ολοκλήρωμα είναι η παράγωγος της f(x) , στο 2ο μέλος η παράγουσα του 1 είναι το x και η παράγουσα του 1/χ είναι το lnx
Άρα καταλήγω στην σχέση που θέλω να αποδείξω: e^f(x) + f(x) = x + lnx
Απάντησα μόνο το α γτ για να τα γράψω εδώ μου παίρνει πολλή ώρα και δεν ήθελα να με προλάβει άλλος...
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
Εργάζομαι τώρα και για τα υπόλοιπα!
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Πολύ χαρούμενος :D :D](https://www.e-steki.gr/images/smilies/biggrin.gif)
Μια παρατηρηση για το παιδι απο πανω: Πρεπει να δειξεις οτι το c ολοκληρωσης ειναι το μηδεν !
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kostaspotter
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αφού μας δίνει τον τύπο της f και θέλουμε να δείξουμε πως είναι αυτος: f(x)=lnx , τον χρησιμοποιώ στην σχέση που απέδειξα στο ερώτημα α, δλδ όπου f(x) βάζω lnx: e^lnx + lnx =x + lnx
Από περσινή ιδιότητα της άλγεβρας ξέρουμε πως e^lnx=x και συνεχίζω: x + lnx = x + lnx Που είναι αληθής άρα και η f(x) = lnx είναι αληθής
Ξέρω πως λύνεται αλλιώς και πως αυτός ο τρόπος δεν είναι τόσο σωστός...άμα μπορέσετε να μου δείξετε και τον άλλο τρόπο ευχαριστώ...:S
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 2 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 287 μέλη διάβασαν αυτό το θέμα:
- ggl
- ioanna2007
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.