Βοήθεια/Aπορίες στα Μαθηματικά Προσανατολισμού

Itach1

Διάσημο μέλος

Ο Τζουτζουμπρούτζος αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 2,350 μηνύματα.
μια βοηθεια σ'αυτο:
Αν οι συναρτησεις f,g ειναι ορισμενες και συνεχεις στο [0,1] και πληρουν τις σχεσεις f(0)<g(0) και f(1)>g(1), νδο υπαρχει ενα τουλαχιστον ξ ανηκει (0,1) τετοιο ωστε f(ξ)=g(ξ)
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

vassilis498

Διακεκριμένο μέλος

Ο vassilis498 αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 7,079 μηνύματα.
μια βοηθεια σ'αυτο:
Αν οι συναρτησεις f,g ειναι ορισμενες και συνεχεις στο [0,1] και πληρουν τις σχεσεις f(0)<g(0) και f(1)>g(1), νδο υπαρχει ενα τουλαχιστον ξ ανηκει (0,1) τετοιο ωστε f(ξ)=g(ξ)

θέσε συνάρτηση f(x)-g(x) και σκέψου τι θες να αποδείξεις.

Bolzano
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Βασίλης Δ.

Νεοφερμένος

Ο Βασίλης Δ. αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Κόρινθος (Κόρινθος). Έχει γράψει 43 μηνύματα.
Καλησπέρα..Βάλαμε με τον μαθηματικό μας ένα στοίχημα οτι όποιος λύσει αυτήν την άσκηση θα μας παραγγείλει πίτσες στο φροντιστήριο..Είναι στο κεφάλαιο με την εφαπτόμενη και λέει

Έστω μια συνάρτηση f(x)=4x^2. Να δείξετε ότι οι εφαπτόμενες που άγονται από οποιοδήποτε σημείο της ευθείας η : y= -1/16 είναι κάθετες..

Αν μπορεί κάποιος ας με βοηθήσει αλλα να αναλύσει λίγο τι κάνει και γιατί το κάνει για να του τα εξηγήσω και εγώ :D
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

vassilis498

Διακεκριμένο μέλος

Ο vassilis498 αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 7,079 μηνύματα.
άγονται όπως λέμε τέμνονται; :P
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

drosos

Πολύ δραστήριο μέλος

Ο Βασίλης αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Φοιτητής και μας γράφει απο Κερατσίνι (Αττική). Έχει γράψει 1,151 μηνύματα.
διερχονται ειναι το αγονται
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

exc

Διάσημο μέλος

Ο exc αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 2,812 μηνύματα.
Καλησπέρα..Βάλαμε με τον μαθηματικό μας ένα στοίχημα οτι όποιος λύσει αυτήν την άσκηση θα μας παραγγείλει πίτσες στο φροντιστήριο..Είναι στο κεφάλαιο με την εφαπτόμενη και λέει

Έστω μια συνάρτηση f(x)=4x^2. Να δείξετε ότι οι εφαπτόμενες που άγονται από οποιοδήποτε σημείο της ευθείας η : y= -1/16 είναι κάθετες..

Αν μπορεί κάποιος ας με βοηθήσει αλλα να αναλύσει λίγο τι κάνει και γιατί το κάνει για να του τα εξηγήσω και εγώ :D
f '(x)=8x
Έστω ότι οι δύο εφαπτόμενες τέμνουν την y=-1/16 στο χ0.
Η μία εφαπτόμενη τέμνει την f στο χ1 και η άλλη στο χ2.

Για την πρώτη εφαπτόμενη έχεις την εξίσωση y+1/16=f '(x1)(x-x0). Για την εξίσωση της δεύτερης απλά βάλε όπου χ1, το χ2.
Η τομή της πρώτης εφαπτόμενης με την f: 4χ1^2+1/16=8χ1(χ1-χ0)=> 4χ1^2-8χ0χ1-1/16 και λύνεις ως προς χ1 την δευτεροβάθμια. Για την τομή της δεύτερης σου προκύπτει η ίδια εξίσωση, αλλά με χ1->χ2.
Για να είναι η τομή με την f σε διαφορετικά σημεία παίρνεις λύσεις των εξισώσεων έτσι ώστε χ1 να είναι διάφορο του χ2.
Η κλίση των εφαπτόμενων είναι 8χ1 και 8χ2. Αν τα πολλαπλασιάσεις, θα βρεις -1.
ο.έ.δ.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Βασίλης Δ.

Νεοφερμένος

Ο Βασίλης Δ. αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Κόρινθος (Κόρινθος). Έχει γράψει 43 μηνύματα.
f '(x)=8x
Έστω ότι οι δύο εφαπτόμενες τέμνουν την y=-1/16 στο χ0.
Η μία εφαπτόμενη τέμνει την f στο χ1 και η άλλη στο χ2.

Για την πρώτη εφαπτόμενη έχεις την εξίσωση y+1/16=f '(x1)(x-x0). Για την εξίσωση της δεύτερης απλά βάλε όπου χ1, το χ2.
Η τομή της πρώτης εφαπτόμενης με την f: 4χ1^2+1/16=8χ1(χ1-χ0)=> 4χ1^2-8χ0χ1-1/16 και λύνεις ως προς χ1 την δευτεροβάθμια. Για την τομή της δεύτερης σου προκύπτει η ίδια εξίσωση, αλλά με χ1->χ2.
Για να είναι η τομή με την f σε διαφορετικά σημεία παίρνεις λύσεις των εξισώσεων έτσι ώστε χ1 να είναι διάφορο του χ2.
Η κλίση των εφαπτόμενων είναι 8χ1 και 8χ2. Αν τα πολλαπλασιάσεις, θα βρεις -1.
ο.έ.δ.

Ευχαριστώ πολύ:D τι ειναι το ο.ε.δ ?
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

rebel

Πολύ δραστήριο μέλος

Ο Κώστας αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Ηράκλειο (Αττική). Έχει γράψει 1,025 μηνύματα.
όπερ έδει δείξαι = αυτό που πρέπει να αποδειχθεί
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

antwwwnis

Διάσημο μέλος

Ο Αντωωωνης αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Φοιτητής και μας γράφει απο ΗΠΑ (Αμερική). Έχει γράψει 2,939 μηνύματα.
Καλησπέρα..Βάλαμε με τον μαθηματικό μας ένα στοίχημα οτι όποιος λύσει αυτήν την άσκηση θα μας παραγγείλει πίτσες στο φροντιστήριο..Είναι στο κεφάλαιο με την εφαπτόμενη και λέει

Έστω μια συνάρτηση f(x)=4x^2. Να δείξετε ότι οι εφαπτόμενες που άγονται από οποιοδήποτε σημείο της ευθείας η : y= -1/16 είναι κάθετες..

Αν μπορεί κάποιος ας με βοηθήσει αλλα να αναλύσει λίγο τι κάνει και γιατί το κάνει για να του τα εξηγήσω και εγώ :D



Έστω η παραβολή C: y=4x² που γράφεται x²=(1/4)*y , με p=1/8
H διευθετούσα της είναι η y=-p/2 δηλ y=-1/16

Οι εφαπτομένες μιας παραβολής που άγονται από σημείο της διευθετούσας της τέμνονται κάθετα πάνω στη διευθετούσα.
(Το έχεις κάνει πέρσι σαν εφαρμογή του σχολικού στα μαθηματικά κατεύθυνσης.)
Η Cf και η C ταυτίζονται. Το δείξαμε :smoke:
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

depth.hunter

Νεοφερμένος

Η depth.hunter αυτή τη στιγμή δεν είναι συνδεδεμένη. Μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 95 μηνύματα.
φ(χ)=ριζα(χ+1)


γ(χ)= 4χ-5 χ<=-1
γ(χ)=2χ+1 χ=>-1

να βρείτε αν είναι συνεχής η φ η γ και η γοφ.
(η φ είναι συνεχής η γ δεν είναι..η καθηγήτρια μας είπε πως η γοφ είναι συνεχής με τον ένα κλάδο..γίνεται όμως αυτό? για να είναι η γοφ συνεχής δεν πρέπει να ειναι και οι 2 συναρτήσεις συνεχής? ) :worry:
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Βασίλης Δ.

Νεοφερμένος

Ο Βασίλης Δ. αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Κόρινθος (Κόρινθος). Έχει γράψει 43 μηνύματα.
Έστω η παραβολή C: y=4x² που γράφεται x²=(1/4)*y , με p=1/8
H διευθετούσα της είναι η y=-p/2 δηλ y=-1/16

Οι εφαπτομένες μιας παραβολής που άγονται από σημείο της διευθετούσας της τέμνονται κάθετα πάνω στη διευθετούσα.
(Το έχεις κάνει πέρσι σαν εφαρμογή του σχολικού στα μαθηματικά κατεύθυνσης.)
Η Cf και η C ταυτίζονται. Το δείξαμε :smoke:

Ευχαριστώ πολύ..στον λαιμό να μας κάτσει:P:P ΧΑΧΑ
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Demlogic

Πολύ δραστήριο μέλος

Ο Demlogic αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Μαθητής Α' γυμνασίου. Έχει γράψει 978 μηνύματα.
lim(f²(x)+g²(x))=0 να αποδείξετε οτι limf(x)=0 και limg(x)=0

Y.G. Τελικά το βρήκα, αλλα οποιος θελει ας την λύσει, οσο πιο πολλες λύσεις τοσο καλυτερα
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

rebel

Πολύ δραστήριο μέλος

Ο Κώστας αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Ηράκλειο (Αττική). Έχει γράψει 1,025 μηνύματα.
φ(χ)=ριζα(χ+1)


γ(χ)= 4χ-5 χ<=-1
γ(χ)=2χ+1 χ=>-1

να βρείτε αν είναι συνεχής η φ η γ και η γοφ.
(η φ είναι συνεχής η γ δεν είναι..η καθηγήτρια μας είπε πως η γοφ είναι συνεχής με τον ένα κλάδο..γίνεται όμως αυτό? για να είναι η γοφ συνεχής δεν πρέπει να ειναι και οι 2 συναρτήσεις συνεχής? ) :worry:
και
η οποία είναι συνεχής στο πεδίο ορισμού της .
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

Demlogic

Πολύ δραστήριο μέλος

Ο Demlogic αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Μαθητής Α' γυμνασίου. Έχει γράψει 978 μηνύματα.
Μόλις είδα μια άσκηση στον μπάρλα που είναι της μορφής

x ≤ z < y

και αφου limx=limy=Ω λεει κριτήριο παρεμβολης αρα limz=Ω

Δε πειράζει που είναι z < y χωρίς ίσον; δεν πρεπει να έχει και ισα το ΚΠ;

(η ασκηση ειναι σελιδα 168 η 22)
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Rempeskes

Επιφανές μέλος

Ο Rempeskes αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 8,045 μηνύματα.

Demlogic

Πολύ δραστήριο μέλος

Ο Demlogic αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Μαθητής Α' γυμνασίου. Έχει γράψει 978 μηνύματα.

Pagitas

Εκκολαπτόμενο μέλος

Ο Pagitas αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Φοιτητής. Έχει γράψει 341 μηνύματα.
οχι πειράζει; ή οχι δε πειράζει; ^_^
Δεν πειραζει. Αν θυμασαι καλα τη θεωρια, αν f(x)<g(x)=>Limf(x)<=Limg(x)
Ξερω, φαινεται μια ασημαντη λεπτομερεια οταν το διαβαζεις, αλλα υπαρχουν ασκησεις που χωρις αυτο δε βγαινουν.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Demlogic

Πολύ δραστήριο μέλος

Ο Demlogic αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Μαθητής Α' γυμνασίου. Έχει γράψει 978 μηνύματα.
Δεν πειραζει. Αν θυμασαι καλα τη θεωρια, αν f(x)<g(x)=>Limf(x)<=Limg(x)
Ξερω, φαινεται μια ασημαντη λεπτομερεια οταν το διαβαζεις, αλλα υπαρχουν ασκησεις που χωρις αυτο δε βγαινουν.

το θυμόμουν απλα ήθελα να βεβαιωθώ οτι εφαρμόζεται με ΚΠ. :-D
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

PSholic_xD

Νεοφερμένος

Ο PSholic_xD αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών και Απόφοιτος. Έχει γράψει 47 μηνύματα.
γ(χ)= 4χ-5 χ<=-1
γ(χ)=2χ+1 χ=>-1

Γίνεται μια δίτυπη συνάρτηση να εχει τιμή και για τους δύο κλάδους στο σημείο αλλαγής της? :hmm:
Γιατί έχεις <= και =>.Έτσι είναι δοσμένο από την άσκηση?
Αλλά από την άλλη,αν αντικαταστήσεις το x=-1,παίρνεις δύο τιμές για το ίδιο σημείο,οπότε δεν είναι συνάρτηση! :/:
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Demlogic

Πολύ δραστήριο μέλος

Ο Demlogic αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Μαθητής Α' γυμνασίου. Έχει γράψει 978 μηνύματα.
Μπορεί κάποιος να μου πει εαν η λύση μου στην παρακάτω άσκηση είναι ορθή;

Δεδομένα: f,g: R -> R , και ισχύει f(x) ≤ 0 ≤ g(x) για καθε xER και lim(f(x)-g(x))=0 με x->0

να δείξετε οτι limf(x)=limg(x)=0 για x->0

ΛΥΣΗ:
f(x)-g(x)=h(x) με lim(h(x))=0

f(x)=h(x)+g(x) αφου g(x)≥0* θα είναι

f(x) ≥ h(x) => lim(f(x))≥0 όμως απο τα δεδομένα ισχύει f(x)≤0 => lim(f(x))≤0
αρα lim(f(x))=0

όμοια f(x)-g(x)=h(x) => g(x) = - h(x) + f(x)
όμως f(x)≤0 αρα
g(x) ≤ -h(x) => lim(g(x)) ≤ 0 και απο τα δεδομενα g(x)≥0 => limg(x)≥0
αρα limg(x)=0

τι λετε;
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Χρήστες Βρείτε παρόμοια

Top