Βοήθεια/Aπορίες στα Μαθηματικά Προσανατολισμού

StratosBaz

Νεοφερμένος

Ο StratosBaz αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών, Μαθητής Γ' λυκείου και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 10 μηνύματα.
Γεια σας εχω ξοδεψει πολλες ωρες για μια φαινομενικα ευκολη ασκηση αλλα δεν:(
Να βρεθει ο Γ.Τ. των εικονων του z=3/(2+συνθ+iημθ)
η ζητουμενη λυση ειναι (x-2)^2+y^2=1 και το μονο αποτελεσμα που εχω βρει(γιατι εχω δοκιμασει διαφορα που παρατησα στη πορεια)δεν ειναι ουτε κυκλος και εχει μεσα το ημθ (4χημθ+9y-3ημθ=0)
Thanks in advance:redface:
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

antwwwnis

Διάσημο μέλος

Ο Αντωωωνης αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Φοιτητής και μας γράφει απο ΗΠΑ (Αμερική). Έχει γράψει 2,939 μηνύματα.
Γεια σας εχω ξοδεψει πολλες ωρες για μια φαινομενικα ευκολη ασκηση αλλα δεν:(
Να βρεθει ο Γ.Τ. των εικονων του z=3/(2+συνθ+iημθ)
η ζητουμενη λυση ειναι (x-2)^2+y^2=1 και το μονο αποτελεσμα που εχω βρει(γιατι εχω δοκιμασει διαφορα που παρατησα στη πορεια)δεν ειναι ουτε κυκλος και εχει μεσα το ημθ (4χημθ+9y-3ημθ=0)
Thanks in advance:redface:
Δοκίμασε να φέρεις το πηλίκο αριστερά στη μορφή α+βι.
Μετά απλά παίρνεις χ=α και y=β και επιλύεις ως προς τον τριγωνομετρικό.
Τα υψώνεις στο τετράγωνο και τα προσθέτεις.
Θα χρησιμοποιήσες σίγουρα το συν²θ+ημ²θ=1
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

StratosBaz

Νεοφερμένος

Ο StratosBaz αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών, Μαθητής Γ' λυκείου και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 10 μηνύματα.
το πρωτο που ειχα δοκιμασει αλλα δε βγηκε....
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

antwwwnis

Διάσημο μέλος

Ο Αντωωωνης αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Φοιτητής και μας γράφει απο ΗΠΑ (Αμερική). Έχει γράψει 2,939 μηνύματα.
το πρωτο που ειχα δοκιμασει αλλα δε βγηκε....
Αν και βγαίνει λίγο μεγάλη λύση, τελικά βγαίνει. Αρκεί να μην κάνεις λάθος στις πράξεις.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

StratosBaz

Νεοφερμένος

Ο StratosBaz αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών, Μαθητής Γ' λυκείου και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 10 μηνύματα.
Αν και βγαίνει λίγο μεγάλη λύση, τελικά βγαίνει. Αρκεί να μην κάνεις λάθος στις πράξεις.
ακαλα μ'αρεσει που την ειχα ξεκινησει απο την αρχη 2 φορες με αυτον τον τροπο...ευχαριστω θα ξαναρχισω με περισσοτερη προσοχη
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

NoName

Νεοφερμένος

Ο NoName αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Φοιτητής. Έχει γράψει 32 μηνύματα.
lim {(λ-1)χ[στην 3η] + μχ* +χ+1} / μχ[στην 3η] +λχ +1 χ---> +00 να βρεθει το οριο για τις διαφορες τιμες των λ,μ eR...... την δοκιμασα αλλα με μπερδεψε λιγο...την μεθοδολογια την ξερω αλλα δεν μου βγαινει...
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

giorgos_dr

Νεοφερμένος

Ο giorgos_dr αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 36 ετών. Έχει γράψει 55 μηνύματα.
καλησπερα μια βοηθεια σε 2 ασκησεις
και

Ευχαριστω!

1 να βρεθουν τα α.β


2


κανεις?
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Επεξεργάστηκε από συντονιστή:

natasoula...

Πολύ δραστήριο μέλος

Η Νατάσα αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι 30 ετών και Μεταπτυχιούχος. Έχει γράψει 1,907 μηνύματα.
Τα έλυσα με παραγώγους και βρήκα στο πρώτο α=β=-1 και στο δεύτερο 19/6(παίζει λάθος στις πράξεις,δεν τις ξανακοίταξα!)...Αλλά δεν ξέρω αν έχεις κάνει παραγώγους...
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Civilara

Περιβόητο μέλος

Ο Civilara αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Δανία (Ευρώπη). Έχει γράψει 4,344 μηνύματα.
1 να βρεθουν τα α.β

Θεωρώ την συνάρτηση f(x)=(αx^2-(β+3)x+2α+β)/(x^2-4x+3)=(αx^2-(β+3)x+2α+β)/[(x-1)(x+3)]
Το πεδίο ορισμού της f είναι το A=(-άπειρο,-3)U(-3,1)U(1,+άπειρο), οπότε έχει νόημα το lim(x->1)f(x). Γνωρίζουμε ότι lim(x->1)f(x)=2

Για κάθε x στο Α ισχύει αx^2-(β+3)x+2α+β=f(x)(x-1)(x+3). Άρα lim(x->1)(αx^2-(β+3)x+2α+β)=lim(x->1)f(x)*lim(x->1)(x-1)(x+3)=2*0=0. Όμως lim(x->1)(αx^2-(β+3)x+2α+β)=α-(β+3)+2α+β=3α-3. Επομένως πρέπει 3α-3=0 => 3α=3 => α=1

Η f γράφεται f(x)=(x^2-(β+3)x+β+2)/[(x-1)(x+3)]=(x^2-(β+2)x-x+β+2)/[(x-1)(x+3)]=[x(x-β-2)-(x-β-2)]/[(x-1)(x+3)]=[(x-β-2)(x-1)]/[(x-1)(x+3)] =>
=> f(x)=(x-β-2)/(x+3) όπου x ανήκει A.

Άρα lim(x->1)f(x)=lim(x->1)[(x-β-2)/(x+3)]=(-β-1)/4=-[(β+1)/4]. Επομένως πρέπει -[(β+1)/4]=2 => β+1=-8 => β=-9


Θεωρώ την συνάρτηση f(x)=x^4+x^2+x-SQRT(x^2+2x+6)

Για να ορίζεται η f πρέπει το τριώνυμο P(x)=x^2+2x+6 να μην είναι αρνητικό. Αυτό ισχύει καθώς
P(x)=x^2+2x+6=x^2+2x+4+2=(x+2)^2+2>=2>0. Άρα το πεδίο ορισμού της f είναι το Α=R.

Η f είναι συνεχής και παραγωγίσιμη στο πεδίο ορισμού της με παράγωγο:

f΄(x)=4x^3+2x+1-[(x+1)/SQRT(x^2+2x+6)], x ανήκει R

Για x=1 προκύπτει f(1)=0 και f΄(1)=19/3. Από τον ορισμό της παραγώγου συνάρτησης σε σημείο έχουμε:

lim(x->1)[(f(x)-f(1))/(x-1)]=f΄(1) => lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x-1)]=19/3

Επομένως

lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x^2-1)]=lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x-1)(x+1)]=
=lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x-1)]*lim(x->1)[1/(x+1)]=(19/3)*(1/2)=19/6

Άρα lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x^2-1)]=19/6
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Επεξεργάστηκε από συντονιστή:

exc

Διάσημο μέλος

Ο exc αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 2,812 μηνύματα.
Civilara, δεν είδα αναλυτικά τις λύσεις σου, αλλά τα αποτελέσματα στα οποία καταλήγεις είναι λανθασμένα.

Στην 2η βγαίνει 19/6 το όριο. Αν δεν θέλουμε να χρησιμοποιήσουμε παραγώγους: πολλαπλασιάζουμε αριθμητή και παρανομαστή με τη συζυγή παράσταση του αριθμητή, δηλ. με , κάνουμε πράξεις στον αριθμητή και απλοποιούμε (πχ με διαίρεση πολυωνύμων) τον αριθμητή με το (χ^2-1) και καταλήγουμε στο ζητούμενο όριο (19/6).

Στην πρώτη, πρέπει οπωσδήποτε α=1 για να είναι το όριο πεπερασμένο. Και μετά με Hospital βρίσκουμε ότι το όριο ισούται με (1+β)/2. Για να κάνει 2, πρέπει β=3. Χωρίς Hospital, βγαίνει με παραγοντοποίηση, αφού χ^2-(β+3)χ+β+2=(χ-1)(χ-β-2) και χ^2-4χ+3=(χ-1)(χ-3).
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

rebel

Πολύ δραστήριο μέλος

Ο Κώστας αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Ηράκλειο (Αττική). Έχει γράψει 1,025 μηνύματα.
Μία λύση ακόμα για το 2ο. H συνάρτηση γράφεται:







Tελικά το όριο είναι
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Civilara

Περιβόητο μέλος

Ο Civilara αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Δανία (Ευρώπη). Έχει γράψει 4,344 μηνύματα.
Στην πρώτη, πρέπει οπωσδήποτε α=1 για να είναι το όριο πεπερασμένο. Και μετά με Hospital βρίσκουμε ότι το όριο ισούται με (1+β)/2. Για να κάνει 2, πρέπει β=3. Δεν μπορώ να σκεφτώ πώς θα το βγάζαμε χωρίς Hospital (δε νομίζω πως γίνεται).

Έλεγξα την 1η άσκηση και κατέληξα πάλι στο ίδιο. Αν το πάρουμε αντίστροφα για την f(x)=[αx^2-(β+3)+2α+β)]/(x^2-4x+3) έχουμε το εξής:

Για α=1 και β=-9 (δικιά μου λύση) έχουμε

f(x)=(x^2+6x-7)/(x^2-4x+3)=[(x+7)(x-1)]/[(x-1)(x+3)]=(x+7)/(x+3)
Οπότε lim(x->1)f(x)=lim(x->1)[(x+7)/(x+3)]=(1+7)/(1+3)=8/4=2 όπως δίνεται στην εκφώνηση


Για α=1 και β=3 έχουμε

f(x)=(x^2-6x+5)/(x^2-4x+3)=[(x-5)(x-1)]/[(x-1)(x+3)]=(x-5)/(x+3)
Οπότε lim(x->1)f(x)=lim(x->1)[(x-5)/(x+3)]=(1-5)/(1+3)=-4/4=-1 που είναι διαφορετικό από αυτό της εκφώνησης
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

exc

Διάσημο μέλος

Ο exc αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 2,812 μηνύματα.
Έλεγξα την 1η άσκηση και κατέληξα πάλι στο ίδιο. Αν το πάρουμε αντίστροφα για την f(x)=[αx^2-(β+3)+2α+β)]/(x^2-4x+3) έχουμε το εξής:

Για α=1 και β=-9 (δικιά μου λύση) έχουμε

f(x)=(x^2+6x-7)/(x^2-4x+3)=[(x+7)(x-1)]/[(x-1)(x+3)]=(x+7)/(x+3)
Οπότε lim(x->1)f(x)=lim(x->1)[(x+7)/(x+3)]=(1+7)/(1+3)=8/4=2 όπως δίνεται στην εκφώνηση


Για α=1 και β=3 έχουμε

f(x)=(x^2-6x+5)/(x^2-4x+3)=[(x-5)(x-1)]/[(x-1)(x+3)]=(x-5)/(x+3)
Οπότε lim(x->1)f(x)=lim(x->1)[(x-5)/(x+3)]=(1-5)/(1+3)=-4/4=-1 που είναι διαφορετικό από αυτό της εκφώνησης
Ok. Έχεις ένα πρόσημο στην παραγοντοποίηση λάθος. χ^2-4χ+3=(χ-1)(χ-3), όχι +.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Civilara

Περιβόητο μέλος

Ο Civilara αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Δανία (Ευρώπη). Έχει γράψει 4,344 μηνύματα.
Ok. Έχεις ένα πρόσημο στην παραγοντοποίηση λάθος. χ^2-4χ+3=(χ-1)(χ-3), όχι +.
Έχεις δίκιο.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

rebel

Πολύ δραστήριο μέλος

Ο Κώστας αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Ηράκλειο (Αττική). Έχει γράψει 1,025 μηνύματα.
lim {(λ-1)χ[στην 3η] + μχ* +χ+1} / μχ[στην 3η] +λχ +1 χ---> +00 να βρεθει το οριο για τις διαφορες τιμες των λ,μ eR...... την δοκιμασα αλλα με μπερδεψε λιγο...την μεθοδολογια την ξερω αλλα δεν μου βγαινει...

Εν συντομία βρήκα τις εξής περιπτώσεις:

Ελπίζω να μην μου ξέφυγε κάτι.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

g1wrg0s

Επιφανές μέλος

Ο 01001 αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 9,074 μηνύματα.
Παιδια μια βοηθεια.
ποσο κανει το οριο lim (2-cotθ) οταν θ->0 ;

Ευχαριστω για καθε απαντηση .
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

trick

Νεοφερμένος

Η trick αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι 30 ετών και μας γράφει απο Κέρκυρα (Κέρκυρα). Έχει γράψει 37 μηνύματα.
Παιδια μια βοηθεια.
ποσο κανει το οριο lim (2-cotθ) οταν θ->0 ;

Ευχαριστω για καθε απαντηση .

Εφόσον το όριο cotθ όταν θ->0 είναι όριο του συνημιτόνου θ, δηλαδή 1, προς το ημίτονο θ, δηλαδή 0, το lim(cotθ) όταν θ->0 είναι + ∞ .
Έτσι lim(2-cotθ) όταν θ->0 κάνει - ∞ .
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

g1wrg0s

Επιφανές μέλος

Ο 01001 αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 9,074 μηνύματα.
Εφόσον το όριο cotθ όταν θ->0 είναι όριο του συνημιτόνου θ, δηλαδή 1, προς το ημίτονο θ, δηλαδή 0, το lim(cotθ) όταν θ->0 είναι + ∞ .
Έτσι lim(2-cotθ) όταν θ->0 κάνει - ∞ .
Το οριο lim(cotθ) για θ->0+ ειναι +οο , ενω για θ->0- ειναι -οο . Αν η απαντηση στο παραπανω οριο ειναι οτι ο παραπανω οριο δεν υπαρχει τοτε δεκτη . Κατι που ομως δεν νομιζω διοτι αν εφαρμωσω κανονα de L' Hopital (προφανως δεν επιτρεπεται να χρησιμοποιησω) τοτε ολο το οριο βγαινει 2 (αν δεν κανω λαθος)
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

rebel

Πολύ δραστήριο μέλος

Ο Κώστας αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Ηράκλειο (Αττική). Έχει γράψει 1,025 μηνύματα.


Δεν υπάρχει το όριο.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

trick

Νεοφερμένος

Η trick αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι 30 ετών και μας γράφει απο Κέρκυρα (Κέρκυρα). Έχει γράψει 37 μηνύματα.
Το οριο lim(cotθ) για θ->0+ ειναι +οο , ενω για θ->0- ειναι -οο . Αν η απαντηση στο παραπανω οριο ειναι οτι ο παραπανω οριο δεν υπαρχει τοτε δεκτη . Κατι που ομως δεν νομιζω διοτι αν εφαρμωσω κανονα de L' Hopital (προφανως δεν επιτρεπεται να χρησιμοποιησω) τοτε ολο το οριο βγαινει 2 (αν δεν κανω λαθος)

Δεν έχω κάνει κανόνα de L' Hopital ακόμα... Η απάντησή μου είναι ότι το όριο είναι μείον άπειρο, δεν είναι πραγματικός αριθμός δηλαδή.

Επεξεργασία: χμ, δεν κοίταξα τα πλευρικά, ο Κώστας από πάνω έχει δίκιο.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Χρήστες Βρείτε παρόμοια

Top