lowbaper92
Πολύ δραστήριο μέλος
Το σημείο τομής είναι τονα βρεθεί η εξίσωση ευθείας που περνάει από το σημείο τομής των ευθειών : (E) y = 3x - 5 (D) y = x - 3 kai
(a) είναι κάθετη στο διάνυσμα: a dianysma = (-1,5)
(b) περνάει από το σημείο A(0,3)
(c) είναι παράλληλη στην ευθεία ΜΝ όπου Ν(2,0) και Μ(2,3)
Γενικά μια ευθεία που διέρχεται απ'το σημείο είναι της μορφής
Άρα στην περίπτωσή μας x0=1 και y0=-2, οπότε κάθε ευθεία που ψάχνουμε είναι της μορφής
Οπότε το μόνο που χρειαζόμαστε είναι να βρούμε το συντελεστή διεύθυνσης (λ)
------------------------------------------------
α)
Εφόσον θέλουμε η ευθεία να είναι κάθετη στο διάνυσμα, χρησιμοποιούμε τη σχέση:
Βάζουμε το (λ) που βρήκαμε στη γενική μορφή και προκύπτει η ευθεία y=(1/5)x-11/5
------------------------------------------------
β) Η εκφώνηση λέει ότι η ευθεία περνάει από 2 γνωστά σημεία, το Κ(1,-2) και το Α(0,3), άρα ο συντελεστής διεύθυνσης είναι
, και ομοίως βρίσκουμε την ευθεία.
------------------------------------------------
γ) Παρατηρούμε ότι η ευθεία που διέρχεται απ'τα σημεία Ν και Μ είναι κατακόρυφη, και συγκεκριμένα η
Για να είναι παράλληλή της η ευθεία που ψάχνουμε θα πρέπει να είναι κι αυτή κατακόρυφη, δηλαδή της μορφής
Κι επειδή θέλουμε να διέρχεται απ'το Κ(1,-2) αναγκαστικά προκύπτει ότι η ευθεία θα είναι η
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
giorgosHTML
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
κοκομπλοκος
Νεοφερμένος
[
δινονται οι ευθειες ε;χημθ+ψσυνθ=συνθ κ μια αλλη η; χσυνθ-ψημθ=ημθ
ι) ν.δ.ο οι ευθειες τεμνονται
ιι)να βρειτε το σημειο τομης τους Μ
ιιι)αν μια ευθεια ζ τεμνει τις ευθειες ε κ η στο σημεια Α,Β αντιστοιχα ν.δ.ο ΜΑ.ΜΒ=0 <--- ΣΕ ΔΙΑΝΥΣΜΑΤΑ ΕΙΝΑΙ ΤΑ ΜΑ Κ ΜΒ
ΜΙΑ ΒΟΗΘΕΙΑ ΟΠΟΙΟΣ ΜΠΟΡΕΙ
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
To A δεν ανήκει στις ε1 και ε2 άρα ας πούμε χωρίς βλάβη της γενικότητας Γ την κορυφή που αντιστοιχεί στο ύψος ε1 και την διάμεσο ε2. Λύνοντας το σύστημα των ε1 και ε2 προκύπτουν οι συντεταγμένες του .τριγωνο ΑΒΓ δινεται κορυφη Α(0.1) κ το υψος ε1:χ=2 κ η διαμεσος ε2:2χ-ψ-1=0 τα οποια αγονται απο την ιδια κορυφη ....να βρω τις κορυφες Β Κ Γ οποιος μπορει ας βοηθησει
Έστω οι συντεταγμένες του Β. Η ευθεία AB είναι κάθετη στην ε1 (ύψος από την κορυφή Γ). Όμως η ε1 είναι παράλληλη στον άξονα χ'χ, άρα η ΑΒ είναι παράλληλη στον y'y και όλα της τα σημεία έχουν την ίδια τεταγμένη. Οπότε . Έστω το μέσον του τμήματος ΑΒ. Οι συντεταγμένες του θα επαληθεύουν την εξίσωση της διαμέσου. Άρα αντικαθιστώντας έχουμε:
α) Η ορίζουσα του συστήματος των δύο ευθειών είναιδινονται οι ευθειες ε;χημθ+ψσυνθ=συνθ κ μια αλλη η; χσυνθ-ψημθ=ημθ
ι) ν.δ.ο οι ευθειες τεμνονται
ιι)να βρειτε το σημειο τομης τους Μ
ιιι)αν μια ευθεια ζ τεμνει τις ευθειες ε κ η στο σημεια Α,Β αντιστοιχα ν.δ.ο ΜΑ.ΜΒ=0 <--- ΣΕ ΔΙΑΝΥΣΜΑΤΑ ΕΙΝΑΙ ΤΑ ΜΑ Κ ΜΒ
Άρα οι ευθείες τέμνονται διότι το σύστημά τους έχει ακριβώς μία λύση.
β)
Υπολογίζουμε
οπότε η λύση δίνεται από τους τύπους
γ)
Αφού το διάνυσμα ανήκει στην ευθεία ε, θα είναι παράλληλο στο διάνυσμα και αφού το διάνυσμα ανήκει στην ευθεία η, θα είναι παράλληλο στο διάνυσμα . Όμως
οπότε τα είναι κάθετα. Έτσι και τα είναι κάθετα οπότε
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
giorgosHTML
Νεοφερμένος
απορίες:
πως θα καταλάβω σε ποιες πλευρές απευθύνονται οι εξισώσεις που δίνει ?
[(ίσως επειδή δεν έχουν ίδιο Χ σημαίνει ότι θα είναι οι 2 μη παράλληλες?)]
και πως θα μπορέσω να βρω της συντεταγμένες των πλευρών αφού μου δίνει μόνο της συντεταγμένες μέσου ?
για προσπαθήστε να τη λύσετε παίδες
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Εχέμυθη
Περιβόητο μέλος
Δίνεται παρ/μο ΑΒΓΔ με κέντρο το Κ(2,1) , Αν οι εξισώσεις δύο πλευρών του είναι y = x + 1 και y = -2x + 4 , να βρεθούν οι εξισώσεις των δύο άλλων πλευρών
απορίες:
πως θα καταλάβω σε ποιες πλευρές απευθύνονται οι εξισώσεις που δίνει ?
[(ίσως επειδή δεν έχουν ίδιο Χ σημαίνει ότι θα είναι οι 2 μη παράλληλες?)]
και πως θα μπορέσω να βρω της συντεταγμένες των πλευρών αφού μου δίνει μόνο της συντεταγμένες μέσου ?
για προσπαθήστε να τη λύσετε παίδες
Αφου οι εξισωσεις εχουν διαφορετικο λ σημαινει ακριβως οτι ειναι οι μη παραλληλες.
αν λυσεις το συστημα των 2 εξισωσεων τοτε θα βρεις ενα σημειο που θα ειναι η το Α , Β , Γ, Δ ...θα το επιλεξεις εσυ αυτο....Αρα θα εχεις 2 σημεια , αυτου του κεντρο και το σημειο που βρηκες(αν στο συστημα επελεξες το σημειο που βρηκες να ειναι το Α τοτε μεσω του Κ θα εχεις υπολογισει το Γ). Αυτο σημαινει οτι μπορεις να υπολογισεις και ενα τριτο σημειο και απο εκει μετα να βρεις τις εξισωσεις των αλλων δυο πλευρων.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
giorgosHTML
Νεοφερμένος
Αφου οι εξισωσεις εχουν διαφορετικο λ σημαινει ακριβως οτι ειναι οι μη παραλληλες.
αν λυσεις το συστημα των 2 εξισωσεων τοτε θα βρεις ενα σημειο που θα ειναι η το Α , Β , Γ, Δ ...θα το επιλεξεις εσυ αυτο....Αρα θα εχεις 2 σημεια , αυτου του κεντρο και το σημειο που βρηκες(αν στο συστημα επελεξες το σημειο που βρηκες να ειναι το Α τοτε μεσω του Κ θα εχεις υπολογισει το Γ). Αυτο σημαινει οτι μπορεις να υπολογισεις και ενα τριτο σημειο και απο εκει μετα να βρεις τις εξισωσεις των αλλων δυο πλευρων.
Ok βρήκα το Γ σημείο.. Μετα ? Πως θα υπολογίσω το B η το Δ ώστε να υπολογίσω και τις εξισώσεις.. (θέλω η 2 συντεταγμένες η μια και την Λ)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 019112
Επισκέπτης
Η άσκηση είναι η εξής:
Π(χ)= βχ^4 +4χ^3 + (α-β)χ^2 + αχ + 10
Να βρεθούν τα α,β, ανήκουν στους R, αν χ^2+2 είναι παράγοντας του Π(χ)
Παρακαλώ λίγη βοήθεια, είναι επείγον και ευχαριστώ εκ των προτέρων!
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 856924
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Εκτελώντας την διαίρεση των πολυωνύμων παίρνουμε:Για κάποιο λόγο δεν υπάρχει topic για βοήθεια στην άλγεβρα, οπότε γράφω εδώ.
Η άσκηση είναι η εξής:
Π(χ)= βχ^4 +4χ^3 + (α-β)χ^2 + αχ + 10
Να βρεθούν τα α,β, ανήκουν στους R, αν χ^2+2 είναι παράγοντας του Π(χ)
Παρακαλώ λίγη βοήθεια, είναι επείγον και ευχαριστώ εκ των προτέρων!
και αφού η διαίρεση είναι τέλεια πρέπει το υπόλοιπο να είναι 0, δηλαδή:
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Αλεξακις
Νεοφερμένος
α) Να βρειτε τις συντεταγμενες των σημειων τομης του Α και Β
β)Να βρειτε την εξισωση της ευθειας ε η οποια οριζεται απο τα κεντρα των δυο κυκλων.Να αποδειξετε οτι ΑΒ καθετο στο ε
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Avalonlll
Νεοφερμένος
Εχω τη παρακατω ασκηση:
Να βρεθει η εξισωση του εγγεγραμμενου κυκλου του τριγωνου που σχηματιζει η ευθεια: (τρια χ πλην ριζα του τρια ψ και δεκαπεντε =0)(3x-ριζα3y+15=0)
με τους αξονες
Λεει να λυθει με 4 τροπους...
Εχω βρει εναν, με τον οποιο απο τον τυπο του ηρωνα(Ε=τρ) εχω βγαλει την ακτινα και μετα εχω κανει
d(i, x'x)=|Y1|=ρ
d(i, y'y)=|X1|=ρ
τα στοιχεια που δινει ειναι:
σημειο Α(-5,0) Β(0,3) Ο(0,0) Kαι το κεντρο του κυκλου το ονομασα Ι(x1,y1)
αν μπορει κανεις θα του ημουν ευγνώμων...
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Ο δεύτερος περιορισμός προκύπτει απ' το γεγονός ότι το κέντρο του εγγεγραμμένου κύκλου θα βρίσκεται κάτω από την ευθεία . Λόγω των περιορισμών (2) και της σχέσης (1) είναι: . Επίσης:
Είναι εύκολο να διαπιστώσουμε ότι οι περιορισμοί (2) ικανοποιούνται για . H άλλη τιμή του αντιστοιχεί στον παρεγγεγραμμένο κύκλο του τριγώνου ΟΑΒ που εφάπτεται στις ίδιες ευθείες.
Άλλος τρόπος είναι να βρεθεί το κέντρο του κύκλου σαν σημείο τομής δύο εσωτερικών διχοτόμων του τριγώνου ΟΑΒ. Και ο τύπος που λες πρέπει να δουλεύει.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Avalonlll
Νεοφερμένος
Έστω το κέντρο του κύκλου και η ακτίνα του. Αφού ο κύκλος εφάπτεται στους άξονες θα ισχύει . Η ευθεία βρίσκουμε ότι τέμνει τους άξονες στα σημεία . Άρα:
Ο δεύτερος περιορισμός προκύπτει απ' το γεγονός ότι το κέντρο του εγγεγραμμένου κύκλου θα βρίσκεται κάτω από την ευθεία . Λόγω των περιορισμών (2) και της σχέσης (1) είναι: . Επίσης:
Είναι εύκολο να διαπιστώσουμε ότι οι περιορισμοί (2) ικανοποιούνται για . H άλλη τιμή του αντιστοιχεί στον παρεγγεγραμμένο κύκλο του τριγώνου ΟΑΒ που εφάπτεται στις ίδιες ευθείες.
Άλλος τρόπος είναι να βρεθεί το κέντρο του κύκλου σαν σημείο τομής δύο εσωτερικών διχοτόμων του τριγώνου ΟΑΒ. Και ο τύπος που λες πρέπει να δουλεύει.
ωραια ευχαριστω πολυ!!
επισης, σε εξισωση παραμετρικη μ χει 2 ερωτηματα
1)να δειξω οτι παριστανει κυκλο οκ αυτο ειναι ευκολο
και 2)να δειξω λεει οτι διερχεται απο 2 σταθερα σημεια Α και Β κ να βρω τις εφαπτομενες π διερχονται απο αυτα τα 2 σημεια
πως τα βρισκω αυτα τα 2 σημεια;
βαζω 2 τυχαιες τιμες στο y και οτι χ βγει και αυτα ειναι τα σημεια;
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
κοκομπλοκος
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Αλεξακις
Νεοφερμένος
Όποιος μπορεί ευχαριστώ!
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Νομάρχης
Εκκολαπτόμενο μέλος
Αν ο γεωμετρικός τόπος της εικόνας του z είναι η ευθεία χ+2y+3=0,να βρεθεί ο γεωμετρικός τόπος των εικόνων του μιγαδικού w=z-3+5i
Όποιος μπορεί ευχαριστώ!
Έστω z=x+yi και w=α+βi. Ισχύει x+2y+3=0 ή x=-3-2y(1).
w=α+βi=x+yi-3-5i=(x-3)+(y-5)i=(1)(-3-2y-3)+(y-5)i=-(2y+6)i+(y-5)i. Δηλαδή α=-2y-6 και β=y-5, αντικαθιστώντας παίρνω
α=-2(β+5)-6 ή α=-2β-10-6 ή α=-2β -16. Δηλαδή, ο ζητούμενος γεωμετρικός τόπος είναι η ευθεία x+2y+16=0. Με συγχωρείς αν έκανα κάποιο αριθμητικό λάθος...
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
- Status
- Το θέμα δεν είναι ανοιχτό για νέες απαντήσεις.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 3 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 18 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.