rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
1)Άλλη μία: Δίνεται η συνάρτησημε
Έστω
σημεία της
. Υποθέτουμε ότι το μέσο του ευθύγραμμου τμήματος
συμπίπτει με το μέσο του ευθύγραμμου τμήματος
. Επίσης υποθέτουμε ότι το μέσο αυτό δεν ανήκει στην ευθεία με εξίσωση
1) Να αποδειχθεί ότι
2) Να αποδειχθεί ότι είτεείτε
![]()
Έστω
και αφού
2) Είναι
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Να αποδειχθεί ότι:
α) Αν η
β) Αν
Φαίνεται αθώα και απλή αλλά δαγκώνει!
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Δίνεται η συνάρτησητέτοια ,ώστε
για κάθε
Να αποδειχθεί ότι:
α) Αν ηείναι παραγωγίσιμη στο 1, είναι και στο
β) Αννα βρεθεί ο τύπος της
Φαίνεται αθώα και απλή αλλά δαγκώνει!
α)
Για x=y=1: f(1)=0
Έστω ένα τυχαίο
Για
Θέτω x-1=u με
Θέτω
β)
Απο (2):
Επειδή f'(1)=1=l :
Για y=1 : c=0 , άρα
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
δε γινεται να παω απο χ0 στο y .
Θα το δω αλλη φορα
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Λίγο στο α) να προσέξεις που τείνει το x (x τείνει στο 1, όχι στο 0, λάθος απροσεξίας μου φαίνεται, τίποτα σοβαρό). Κατά τα άλλα η λύση είναι άψογη. Το β) επίσης είναι ολόσωστο διότι το![]()
α)
Για x=y=1: f(1)=0
Έστω ένα τυχαίο
Γιαστην (1) :
Θέτω x-1=u με
Θέτωμε
β)
Απο (2):
Επειδή f'(1)=1=l :
Για y=1 : c=0 , άρα
Επιβεβαιώστε οτι το β) ειναι λαθος για να το σβησω![]()
δε γινεται να παω απο χ0 στο y .
Θα το δω αλλη φορα
![Πολύ χαρούμενος :D :D](https://www.e-steki.gr/images/smilies/biggrin.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Έστω
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Έστωμε
. Τότε g παραγωγίσιμη στο
με
και
και η δοσμένη σχέση γίνεται
(1)
Έστωμε
. Τότε h παραγωγίσιμη στο
με
και
όπου c πραγματική σταθερά. Για
έχουμε
, άρα
(2). Έστω
με
. k παραγωγίσιμη στο
με
<0 για κάθε x>0 και k συνεχής στο 0 άρα η k είναι γνησίως φθίνουσα άρα k"1-1". Οπότε από τη (2) έχουμε
." />
![thumbsup :thumbsup: :thumbsup:](https://www.e-steki.gr/images/smilies/thumbsup.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Να λυθεί στοη εξίσωση :
![]()
Άρα για κάθε
Για
Έστω
Άρα η εξίσωση
Μια μικρή σημείωση:
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
οπότε η άλλη ρίζα είναι η
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Απίστευτο, αυτό αναβαθμίζει την άσκηση από "καλή και προσιτή" στο "πολύ καλή και για όσους έχουν μάτι αετού". Χωρίς βοηθητικά μέσα; Σίγουρα! Αλλά πρέπει να είσαι πολύ πονηρός και λεπτομερής.Mε "έμπνευση" λογισμικού διαπίστωσα ότι
οπότε η άλλη ρίζα είναι η, μοναδική στο διάστημα
λόγω μονοτονίας όπως είπε ο φίλος από πάνω. Άραγε υπάρχει τρόπος να βρεθεί χωρίς βοηθητικά μέσα;
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
α) Να αποδειχθεί ότι
β) Να αποδειχθεί ότι αν η
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Έστω συνάρτησηορισμένη στο
με την ιδιότητα, όταν οι τιμές της ανεξάρτητης μεταβλητής
βρίσκονται σε γεωμετρική πρόοδο ( με λόγο οποιονδήποτε θετικό ), τότε οι αντίστοιχες τιμές του
βρίσκονται σε αριθμητική πρόοδο και
α) Να αποδειχθεί ότιγια κάθε
β) Να αποδειχθεί ότι αν ηείναι παραγωγίσιμη στο
, τότε είναι παραγωγίσιμη στο
και ισχύει
![]()
α)
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
β)
Έστω τυχαίο
Θέτω
Άρα η f είναι παραγωγίσιμη στο
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![](/proxy.php?image=http%3A%2F%2Fwww.e-steki.gr%2Fimages%2Fimported%2F2014%2F10%2Flogo_mathematica-1.gif&hash=7d01e158d85b5ed08672e6a040d791b4)
Έστω
(o
Όμως οι αριθμοί
όπως θέλαμε. Αν
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Να αποδειχθεί ότι:
α)Το τρίγωνο με κορυφές τις εικόνες των
β)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Έστω οι μιγαδικοί αριθμοίδιαφορετικοί ανά δυο τέτοιοι, ώστε
.
Να αποδειχθεί ότι:
α)Το τρίγωνο με κορυφές τις εικόνες τωνείναι ισόπλευρο.
β)
![]()
α)Παίρνω μέτρα στη σχέση που δίνεται και προκύπτει
μετα:
παίρνω μέτρα και σε αυτή και έχω:
Οπότε
β)Eστω
τότε:
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Θέματα Γενικών Εξετάσεων Μαθηματικών Δ΄ Δέσμης : 1983-2001
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Η
α)Να βρεθεί ο τύπος της
β)Να βρεθούν οι ασύμπτωτες της
(Το β) filler είναι περισσότερο, το α) είναι ενδιαφέρον)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 8 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 287 μέλη διάβασαν αυτό το θέμα:
- ioanna2007
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- ggl
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.