t00nS
Εκκολαπτόμενο μέλος
1)Εστω Π(X)=Αv*x^v+..A1*x+Ao, Av#0. An vεΝ είναι περιττός, να δείξετε ότι η εξίσωση Π(x)=0 έχει μια τουλάχιστον ρίζα στο R
2)έστω πολώνυμο Π(x),βαθμού v>=3.Aν οι εξισώσεις Π(x)=0,Π΄΄(χ)=0 δεν έχουν ρίζεσ στο R,να δείξετε ότι η εξίσωση Π΄(χ) έχει μια ακριβώς ρίζα στο R
3)Να δείξετε ότι η παραπάνω ρίζα έιναι οπωσδήποτε θέση ακροτάτου για την συνάρτση Π(χ)
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Lost in the Fog
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
αν γίνεται μια άσκηση στα πολυώνυμα
1)Εστω Π(X)=Αv*x^v+..A1*x+Ao, Av#0. An vεΝ είναι περιττός, να δείξετε ότι η εξίσωση Π(x)=0 έχει μια τουλάχιστον ρίζα στο R
2)έστω πολώνυμο Π(x),βαθμού v>=3.Aν οι εξισώσεις Π(x)=0,Π΄΄(χ)=0 δεν έχουν ρίζεσ στο R,να δείξετε ότι η εξίσωση Π΄(χ) έχει μια ακριβώς ρίζα στο R
3)Να δείξετε ότι η παραπάνω ρίζα έιναι οπωσδήποτε θέση ακροτάτου για την συνάρτση Π(χ)
1. Αφού ν περιττός:
- άρα τέτοιο ώστε
- άρα τέτοιο ώστε
2. Αφου τότε απο το πρώτο ερώτημα συμπαιραίνουμε πως ν άρτιος, άρα ο βαθμός της παραγώγου θα είναι περιττός επομένως και πάλι απο το πρώτο ερώτημα έχει μια τουλάχιστον ρίζα. Έστω ότι η παράγωγος έχει και δεύτερη ρίζα τότε:
- Π(x) συνεχής στο R.
- Π(x) παραγωγίσημη στο R.
3. Η είναι γν. μονότονη αφου και καθώς είναι συνεχής ώς πολυωνυμική διατηρεί πρόσημο. Άρα το πρόσημο της Π' αλλάζει εκατέρωθεν της ρίζας.Άρα η ρίζα είναι θέση ακροτάτου για την συνάρτηση Π(x).
Για το τρίτο νομίζω υπάρχει και καλύτερος τρόπος να το πεις.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
t00nS
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
στο 2) εννοείς ότι για περιτού βαθμού έχουμε ρίζα,όταν μας λέει μετά ότι η Π(χ)#0 συμπεραίνουμε ότι έχουμε ν άρτιο(εδώ κόλλησα και πριν)
Αφού Π(χ) δίαφορο του μηδενος και στο πρώτο έχουμε αποδείξη πως για ν περιττό έχουμε ρίζα τότε το Π(χ) είναι άρτιου βαθμού.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 845212
Επισκέπτης
1. Αφού ν περιττός:
Άρα απο Θ.Bolzano
- άρα τέτοιο ώστε
- άρα τέτοιο ώστε
2. Αφου τότε απο το πρώτο ερώτημα συμπαιραίνουμε πως ν άρτιος, άρα ο βαθμός της παραγώγου θα είναι περιττός επομένως και πάλι απο το πρώτο ερώτημα έχει μια τουλάχιστον ρίζα. Έστω ότι η παράγωγος έχει και δεύτερη ρίζα τότε:
άρα απο Θ.Rolle . Άτοπο. Άρα η Π'(x) έχει μοναδική ρίζα.
- Π(x) συνεχής στο R.
- Π(x) παραγωγίσημη στο R.
3. Η είναι γν. μονότονη αφου και καθώς είναι συνεχής ώς πολυωνυμική διατηρεί πρόσημο. Άρα το πρόσημο της Π' αλλάζει εκατέρωθεν της ρίζας.Άρα η ρίζα είναι θέση ακροτάτου για την συνάρτηση Π(x).
Για το τρίτο νομίζω υπάρχει και καλύτερος τρόπος να το πεις.
Στο 1ο εκανες μια απροσεξια. Π(ρ2)>0. Αλλιως δεν θα ισχυει το μπολζανο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
Στο 1ο εκανες μια απροσεξια. Π(ρ2)>0. Αλλιως δεν θα ισχυει το μπολζανο.
Yep, απροσεξία. Την διόρθωσα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
εδιτ: λολ, γιατί δεν είδα ότι έχει απαντηθεί ήδη;αν γίνεται μια άσκηση στα πολυώνυμα
1)Εστω Π(X)=Αv*x^v+..A1*x+Ao, Av#0. An vεΝ είναι περιττός, να δείξετε ότι η εξίσωση Π(x)=0 έχει μια τουλάχιστον ρίζα στο R
2)έστω πολώνυμο Π(x),βαθμού v>=3.Aν οι εξισώσεις Π(x)=0,Π΄΄(χ)=0 δεν έχουν ρίζεσ στο R,να δείξετε ότι η εξίσωση Π΄(χ) έχει μια ακριβώς ρίζα στο R
3)Να δείξετε ότι η παραπάνω ρίζα έιναι οπωσδήποτε θέση ακροτάτου για την συνάρτση Π(χ)
2) Π' ' διάφορο του 0 => Π' γνησίως μονότονη => αν έχει ρίζα είναι μοναδική
Π διάφορο του 0 => απορρίπτονται από (α) όσα πολυώνυμα είναι περιττού βαθμού => Η παράγωγος, όμως, ενός πολυωνύμου άρτιου βαθμού, είναι πολυώνυμο περιττό και έχει ρίζα πάντα => ύπαρξη ρίζας
3) Εμ... Προφανώς; Αφού είναι ρίζα της παραγώγου της.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
1. Αφού ν περιττός:
Άρα απο Θ.Bolzano
- άρα τέτοιο ώστε
- άρα τέτοιο ώστε
2. Αφου τότε απο το πρώτο ερώτημα συμπαιραίνουμε πως ν άρτιος, άρα ο βαθμός της παραγώγου θα είναι περιττός επομένως και πάλι απο το πρώτο ερώτημα έχει μια τουλάχιστον ρίζα. Έστω ότι η παράγωγος έχει και δεύτερη ρίζα τότε:
άρα απο Θ.Rolle . Άτοπο. Άρα η Π'(x) έχει μοναδική ρίζα.
- Π(x) συνεχής στο R.
- Π(x) παραγωγίσημη στο R.
3. Η είναι γν. μονότονη αφου και καθώς είναι συνεχής ώς πολυωνυμική διατηρεί πρόσημο. Άρα το πρόσημο της Π' αλλάζει εκατέρωθεν της ρίζας.Άρα η ρίζα είναι θέση ακροτάτου για την συνάρτηση Π(x).
Για το τρίτο νομίζω υπάρχει και καλύτερος τρόπος να το πεις.
Ωραιος, αλλα στο πρωτο ξεχασες να διακρινεις περιπτωσεις για το α.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
Ωραιος, αλλα στο πρωτο ξεχασες να διακρινεις περιπτωσεις για το α.
Όντως. Αυτά που έκανα είναι για α>0.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
saktop
Νεοφερμένος
1) Ποιες αποδείξεις στα Μαθηματικά Κατεύθυνσης χρειάζονται και τα σχήματα;
2) Πώς λύνεται το Θέμα 97, σελίδα 408, στον Μπάρλα;;
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
P@NT?LO$
Νεοφερμένος
δεν τα καταφερνω... ευχαριτω εκ των προτερων
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Sarantis_Ts
Νεοφερμένος
Κατ αρχάς, εχει πεδιο ορισμου (0,+00) όπου και ειναι παρ/μη
1) Για την μονοτονια παραγωγίζεις φυσικά.
f'(x) = 2xlnx + 1/x^2 * x^2 = 2xlnx + x = x(2lnx +1)
το χ ειναι θετικό αφού ανοίκει στο (0,+00) αρα μελετας πρόσημο (2lnx+1)
2lnx+1 > 0 <=> lnx > -1/2 <=> x > e^(-1/2) [ δηλαδή 1/(ρίζα e) ]
επομενως ειναι γν αύξουσα στο [ e^(-1/2), +00) και γν φθίνουσα στο (0, e^(-1/2)]
Το μηδεν είναι ανοιχτο ακρο του ΠΟ αρα τ μονο ακροτατο ειναι στο x= e^(-1/2) (ολικό ελαχιστο)
f( e^(-1/2)) = -1/2e
Όσο για τις ασυμπτωτες, αν πας να βρεις οριο lim (f/x) στο +00 θα βγαλεις +00, δεν ειναι αριθμος, αρα δεν εχει οριζοντια/πλαγια ασυμπτωτη. Ομως εχει κατακορυφη ασυμπτωτη την χ=0 (ο αξονας yy') γιατι limf(x) στο 0 ειναι 0. αρα χ=0 ασυμπτωτη.
Αυτα
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
βοηθεια με τη μονοτονια τα ακροτατα και τις ασυμπτωτες τις f(x)=x^2lnx
δεν τα καταφερνω... ευχαριτω εκ των προτερων
H f(x) παραγωγίσημη ως γινόμενο παραγωγίσημων συναρτήσεων με παράγωγο:
Άρα:
- , Άτοπο αφού
Άρα:
- Άρα η f παρουσιάζει ολικό ελάχιστο στο με τιμή .
Ασύμπτωτες:
- Πλαγιες/Οριζόντιες Ασύμπτωτες:
- Κατακόρυφες Ασύμπτωτες:
Δεν έχει.
Δεν είναι δύσκολη συνάρτηση...
Κατ αρχάς, εχει πεδιο ορισμου (0,+00) όπου και ειναι παρ/μη
1) Για την μονοτονια παραγωγίζεις φυσικά.
f'(x) = 2xlnx + 1/x^2 * x^2 = 2xlnx + x = x(2lnx +1)
το χ ειναι θετικό αφού ανοίκει στο (0,+00) αρα μελετας πρόσημο (2lnx+1)
2lnx+1 > 0 <=> lnx > -1/2 <=> x > e^(-1/2) [ δηλαδή 1/(ρίζα e) ]
επομενως ειναι γν αύξουσα στο [ e^(-1/2), +00) και γν φθίνουσα στο (0, e^(-1/2)]
Το μηδεν είναι ανοιχτο ακρο του ΠΟ αρα τ μονο ακροτατο ειναι στο x= e^(-1/2) (ολικό ελαχιστο)
f( e^(-1/2)) = -1/2e
Όσο για τις ασυμπτωτες, αν πας να βρεις οριο lim (f/x) στο +00 θα βγαλεις +00, δεν ειναι αριθμος, αρα δεν εχει οριζοντια/πλαγια ασυμπτωτη. Ομως εχει κατακορυφη ασυμπτωτη την χ=0 (ο αξονας yy') γιατι limf(x) στο 0 ειναι 0. αρα χ=0 ασυμπτωτη.
Αυτα
Το όριο πρέπει να είναι άπειρο για να έχεις κατακόρυφη ασύμπτωτη.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
P@NT?LO$
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Αμελί
Εκκολαπτόμενο μέλος
Aν σε μια ασκηση πρεπει να χρησιμοποιησω οτι η αντιστροφη της f ειναι 1-1 (εφοσον η f ειναι 1-1) πρεπει να το αποδειξω;Μονο με ατοπο μπορω.σωστα;
Για να αντιστρέφεται η f προφανως και ειναι "1-1". Η αντίστροφή της όμως δεν σημαίνει πως θα είναι κι εκείνη "1-1". Η αντιστρεψιμότητα της αντίστροφης είναι δηλαδή νέα άσκηση, συνεπώς πρέπει να το αποδείξεις.
Η αντιστρεψιμότητα αποδυκνείεται ως εξής:
Έστω f ορισμένη σε διάστημα Δ, τότε:
f(x1)=f(x2) \Leftrightarrow x1=x2
ή
x1\neq x2 \Leftrightarrow f(x1)\neq f(x2)
ή
ότι η f(x)=y έχει μοναδική λύση ως προς y
ή
έχοντας αποδείξει ότι η f είναι γνησίως μονότονη στο Δ, συνεπώς και "1-1".
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
alexalchemist
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
akis95
Δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
παιζει να μπει ευρεση τυπου ξανα για 4ο θεμα?
Είναι ένα πολύ καλό ερώτημα για 4ο αυτό.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
alexalchemist
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 9 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 226 μέλη διάβασαν αυτό το θέμα:
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.