Civilara
Περιβόητο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Eεε, έκανα ορθογραφικό λάθος.
ήθελα να πω.
![]()
Όχι.
Για παράδειγμα η συνάρτηση f(x)=1-(e^x). Η f έχει πεδίο ορισμού το Α=R, πεδίο τιμών το f(Α)=(-οο,1) και ισχύει
lim(x->+oo)f(x)=-oo.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![](/proxy.php?image=http%3A%2F%2Fwww.mathematica.gr%2Fforum%2Flatexrender%2Fpictures%2Fca434fabdc38bf1401730e70652d97b5.png&hash=ab7fff204962f270a1994845d550e7dc)
![](/proxy.php?image=http%3A%2F%2Fwww.mathematica.gr%2Fforum%2Flatexrender%2Fpictures%2F7300c9df2bf5edad3fa40f35082de60a.png&hash=8404d0790aab95bf18a5f34e8379313b)
![](/proxy.php?image=http%3A%2F%2Fwww.mathematica.gr%2Fforum%2Flatexrender%2Fpictures%2Fd8ab69fec79dcfa1e68e6574c06f0278.png&hash=0c5275d40dd125fef220f4870e4eb8f1)
![](/proxy.php?image=http%3A%2F%2Fwww.mathematica.gr%2Fforum%2Flatexrender%2Fpictures%2Fb345e1dc09f20fdefdea469f09167892.png&hash=1a9b1f6b8e7772a034e366f2e856a2c1)
Άσκηση πολυωνύμων Β λυκείου!
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Όχι δεν είναι καν γν. μονότονη.είναι γνησίως αύξουσα η συνάρτηση;
Όχι.
Για παράδειγμα η συνάρτηση f(x)=1-(e^x). Η f έχει πεδίο ορισμού το Α=R, πεδίο τιμών το f(Α)=(-οο,1) και ισχύει
lim(x->+oo)f(x)=-oo.
Οκ. Ευχαριστώ!
![Κλείνω μάτι ;) ;)](https://www.e-steki.gr/images/smilies/wink.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
P@NT?LO$
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
i) Υπαρχει
ii)
iii)Η εξισωση
βοηθεια!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
ii) Θεωρούμε την συνάρτηση
iii) Εύκολο από Rolle για την
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Παιδιά αν έχω μια συνάρτησημπορώ να πω ότι
;
![]()
Επανέρχομαι. Μπορώ όμως να πω πως
![hmmm :hmm: :hmm:](https://www.e-steki.gr/images/smilies/hmmm.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Επανέρχομαι. Μπορώ όμως να πω πωςγια κάθε x ανείκει στο R;
![]()
Φυσικά. Εφόσον το πεδίο ορισμού είναι το R και το πεδίο τιμών είναι το (-οο,1) τότε f(x)<1 για κάθε x ανήκει R.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Φυσικά. Εφόσον το πεδίο ορισμού είναι το R και το πεδίο τιμών είναι το (-οο,1) τότε f(x)<1 για κάθε x ανήκει R.
Οκ, ευχαριστώ!
![Κλείνω μάτι ;) ;)](https://www.e-steki.gr/images/smilies/wink.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
angietrelaful15
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
2)Αν ισχύειν.δ.ο
και
όπου
πραγματικοί!![]()
Άσκηση πολυωνύμων Β λυκείου!
Θεωρούμε τα πολυώνυμα P(x)=f(x)+g(x) και Q(x)=f(x)g(x). Για να ισχύει P(x)=Q(x) για κάθε x ανήκει R πρέπει τα πολυώνυμα P και Q να έχουν τον ίδιο βαθμό nP=nQ.
α) Αν τα πολυώνυμα f και g έχουν τον ίδιο βαθμό nf=ng=n τότε nP=n και nQ=2n. Επομένως έχουμε:
n=2n <=> n=0
που σημαίνει ότι τα f και g είναι σταθερά πολυώνυμα, δηλαδή f(x)=α και g(x)=β για κάθε x ανήκει R όπου α,β ανήκουν R
f(x)+g(x)=f(x)g(x) <=> α+β=αβ
Αν α=1 τότε 1+β=β που είναι αδύνατη, οπότε α διάφορο 1
Αν β=1 τότε α+1=1 που είναι αδύνατη, οπότε β διάφορο 1
Άρα α διάφορο 1 και β διάφορο 1. Τότε έχουμε:
α+β=αβ <=> αβ-β=α <=> (α-1)β=α <=> β=α/(α-1)
β) Αν nf>=ng τότε nP=nf και nQ=nf+ng. Επομένως έχουμε
nf=nf+ng <=> ng=0 που σημαίνει ότι το g είναι σταθερό πολυώνυμο, δηλαδή g(x)=β για κάθε x ανήκει R όπου β ανήκει R. Έχουμε
P(x)=f(x)+g(x)=f(x)+β
Q(x)=f(x)g(x)=βf(x)
P(x)=Q(x) <=> f(x)+β=βf(x) <=> βf(x)-f(x)=β <=> (β-1)f(x)=β
(i) Αν β=1 τότε g(x)=1 για κάθε x ανήκει R και επομένως
P(x)=f(x)+1
Q(x)=f(x)
1>0 => f(x)+1>f(x) <=> P(x)>Q(x) για κάθε x ανήκει R
Άρα όταν g(x)=β=1 τότε για οποιοδήποτε πολυώνυμο f ισχύει f(x)+g(x)>f(x)g(x) για κάθε x ανήκει R
(ii) Αν β διάφορο 1 τότε f(x)=β/(β-1)=α που σημαίνει ότι και το f είναι σταθερό πολυώνυμο (nf=0).
Τότε έχουμε P(x)=Q(x)=(β^2)/(β-1) για κάθε x ανήκει R
β) Αν nf<=ng τότε nP=ng και nQ=nf+ng. Επομένως έχουμε
ng=nf+ng <=> nf=0 που σημαίνει ότι το f είναι σταθερό πολυώνυμο, δηλαδή f(x)=α για κάθε x ανήκει R όπου α ανήκει R. Έχουμε
P(x)=f(x)+g(x)=g(x)+α
Q(x)=f(x)g(x)=αg(x)
P(x)=Q(x) <=> g(x)+α=αg(x) <=> αg(x)-g(x)=α <=> (α-1)g(x)=α
(i) Αν α=1 τότε f(x)=1 για κάθε x ανήκει R και επομένως
P(x)=g(x)+1
Q(x)=g(x)
1>0 => g(x)+1>g(x) <=> P(x)>Q(x) για κάθε x ανήκει R
Άρα όταν f(x)=α=1 τότε για οποιοδήποτε πολυώνυμο g ισχύει f(x)+g(x)>f(x)g(x) για κάθε x ανήκει R
(ii) Αν α διάφορο 1 τότε g(x)=α/(α-1)=β που σημαίνει ότι και το g είναι σταθερό πολυώνυμο (ng=0).
Τότε έχουμε P(x)=Q(x)=(α^2)/(α-1) για κάθε x ανήκει R
Επομένως όταν f(x)=1 τότε για οποιοδήποτε πολυώνυμο g ισχύει f(x)+g(x)>f(x)g(x) για κάθε x ανήκει R και η εξίσωση f(x)+g(x)=f(x)g(x) είναι αδύνατη. Επίσης όταν g(x)=1 τότε για οποιοδήποτε πολυώνυμο f ισχύει f(x)+g(x)>f(x)g(x) για κάθε x ανήκει R και η εξίσωση f(x)+g(x)=f(x)g(x) είναι αδύνατη.
Επειδή ισχύει f(x)+g(x)=f(x)g(x) για κάθε x ανήκει R τότε είναι αδύνατον να είναι f(x)=1 για κάθε x ανήκει R και g(x)=1 για κάθε ανήκει R. Επομένως σε αυτήν την περίπτωση όπως δείχτηκε είναι f(x)=α, α διάφορο 1 και g(x)=β, β διάφορο 1 όπου β=α/(α-1).
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aris-bas
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
ζητω συγνωμη για το πληθος των ερωτηματων
![Embarrassment :redface: :redface:](https://www.e-steki.gr/images/smilies/redface.gif)
ευχαριστω εκ των προτερων!!
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aris-bas
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
γεια σας!μηπως μπορει να βοηθησει κανεις στα παρακατω...?
ζητω συγνωμη για το πληθος των ερωτηματων
ευχαριστω εκ των προτερων!!![]()
και αλλη μια....
εστω z ε C με |z-8|=2|z-2|
α) να βρεθει ο γ.τ των εικονων του z
β)αν z1,z2 δυο μιγαδικοι που οι εικονες τους ανηκουν στο προηγουμενο γ.τ. ν.δ.ο [(z1^v)+(z2^v)]/[z1+z2)^v] ε R , v ε Ν*
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
antonisd95
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
και αλλη μια....
εστω z ε C με |z-8|=2|z-2|
α) να βρεθει ο γ.τ των εικονων του z
β)αν z1,z2 δυο μιγαδικοι που οι εικονες τους ανηκουν στο προηγουμενο γ.τ. ν.δ.ο [(z1^v)+(z2^v)]/[z1+z2)^v] ε R , v ε Ν*
Στο α, ύψωσε στο τετράγωνο (μιας και δεν έχεις πρόβλημα, αφού τα μέλη είναι μη-αρνητικά) και θα σου βγει.
Στο β, θυμήσου πως αν ένας μιγαδικός είναι ίσος με τον συζυγή του, τότε ανήκει στους πραγματικούς.Πάρε λοιπόν τον συζυγή ολόκληρης της παράστασης και κάνοντας τις πράξεις, θα σου βγει ίσος με την αρχική παράσταση.
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Όλα είναι άμεσα από παραγοντική ολοκλήρωση.γεια σας!μηπως μπορει να βοηθησει κανεις στα παρακατω...?
ζητω συγνωμη για το πληθος των ερωτηματων
ευχαριστω εκ των προτερων!!![]()
Μήπως δίνει ότι οικαι αλλη μια....
εστω z ε C με |z-8|=2|z-2|
α) να βρεθει ο γ.τ των εικονων του z
β)αν z1,z2 δυο μιγαδικοι που οι εικονες τους ανηκουν στο προηγουμενο γ.τ. ν.δ.ο [(z1^v)+(z2^v)]/[z1+z2)^v] ε R , v ε Ν*
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
2)
3)
4) Είναι μέρος της 2
5) Ονομάζεις χ²=y και έχεις την 4
6)
Ονομάζεις y=3^x ==>lny= xln3 ==> dy/y=dx.ln3 ==>dx=dy/y.ln3 κλπ
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
t00nS
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Εστω f(X),g(X),φ(Χ) συναρτήσεισ στο R.Αν η f(X) είναι παραγωγίσιμη στο R και η φ(Χ) διπλά παραγωγίσιμη,όπου επίσησ ισχύουν και τα: g(x)=f(x)*φ΄(χ), για κάθε xeR,f΄(χ)#0,φ^2(χ)+(φ΄(χ))^2=1, για κάθε xεR,τότε να δείξετε:Αν οι γραφικές παραστάσεις των f(x),g(x) έχουν κοινό σημείο,έστω Μ(χ0,ψ0),τότε στο κοινό τους αυτό σημείο δέχονται την ίδια εφαπτομένη.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Μια άσκηση
Εστω f(X),g(X),φ(Χ) συναρτήσεισ στο R.Αν η f(X) είναι παραγωγίσιμη στο R και η φ(Χ) διπλά παραγωγίσιμη,όπου επίσησ ισχύουν και τα: g(x)=f(x)*φ΄(χ), για κάθε xeR,f΄(χ)#0,φ^2(χ)+(φ΄(χ))^2=1, για κάθε xεR,τότε να δείξετε:Αν οι γραφικές παραστάσεις των f(x),g(x) έχουν κοινό σημείο,έστω Μ(χ0,ψ0),τότε στο κοινό τους αυτό σημείο δέχονται την ίδια εφαπτομένη.
Επειδή η f είναι παραγωγίσιμη στο R και η φ είναι δύο φορές παραγωγίσιμη στο R τότε η g είναι παραγωγίσιμη στο R με πρώτη παράγωγο:
g΄(x)=f΄(x)φ΄(x)+f(x)φ΄΄(x), x ανήκει R
Θεωρούμε την συνάρτηση h(x)=(φ(x)^2)+(φ΄(x)^2)-1, x ανήκει R. Επειδή η φ είναι 2 φορές παραγωγίσιμη στο R τότε η h είναι παραγωγίσιμη στο R με πρώτη παράγωγο:
h΄(x)=2φ(x)φ΄(x)+2φ΄(x)φ΄΄(x)=2φ΄(x)(φ(x)+φ΄΄(x)), x ανήκει R
Επειδή φ^2(χ)+(φ΄(χ))^2=1 τότε ισχύει h(x)=0 για κάθε x ανήκει R οπότε και h΄(x)=0 για κάθε x ανήκει R. Άρα:
2φ΄(x)(φ(x)+φ΄΄(x))=0 <=> φ΄(x)(φ(x)+φ΄΄(x))=0 για κάθε x ανήκει R
Είναι f(x0)=g(x0)=y0, οπότε έχουμε
f(x0)=g(x0) <=> f(x0)=f(x0)φ΄(x0) <=> f(x)(φ΄(x0)-1)=0 <=> φ΄(x0)-1=0 (εφόσον f(x0) διάφορο 0) <=> φ΄(x0)=1
(φ(x0)^2)+(φ΄(x0)^2)=1 <=> (φ(x0)^2)+(1^2)=1 <=> (φ(x0)^2)+1=1 <=> (φ(x0)^2)=0 <=> φ(x0)=0
φ΄(x0)(φ(x0)+φ΄΄(x0))=0 <=> 1*(0+φ΄΄(x0))=0 <=> φ΄΄(x0)=0
Άρα έχουμε
g΄(x0)=f΄(x0)φ΄(x0)+f(x0)φ΄΄(x0)=f΄(x0)*1+f(x0)*0=f΄(x0) => g΄(x0)=f΄(x0)
Επειδή f(x0)=g(x0)=y0 και f΄(x0)=g΄(x0)=λ τότε οι Cf και Cg έχουν κοινή εφαπτομένη στο Μ(x0,y0) με εξίσωση:
y-y0=λ(x-x0) <=> y=λx+y0-λx0
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
t00nS
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
δηλαδή εδώ αποδείχθηκε ότι στο σημείο Μ(χ0,y0) αφού η φ ΄΄(χ0)=0 παρουσιάζει σημείο καμπής;Είναι f(x0)=g(x0)=y0, οπότε έχουμε
f(x0)=g(x0) <=> f(x0)=f(x0)φ΄(x0) <=> f(x)(φ΄(x0)-1)=0 <=> φ΄(x0)-1=0 (εφόσον f(x0) διάφορο 0) <=> φ΄(x0)=1
(φ(x0)^2)+(φ΄(x0)^2)=1 <=> (φ(x0)^2)+(1^2)=1 <=> (φ(x0)^2)+1=1 <=> (φ(x0)^2)=0 <=> φ(x0)=0
φ΄(x0)(φ(x0)+φ΄΄(x0))=0 <=> 1*(0+φ΄΄(x0))=0 <=> φ΄΄(x0)=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
δηλαδή εδώ αποδείχθηκε ότι στο σημείο Μ(χ0,y0) αφού η φ ΄΄(χ0)=0 παρουσιάζει σημείο καμπής;
Δεν είναι σαφής η ερώτησή σου. Λογικά αναφέρεσαι στη γραφική παράσταση της φ. Το σημείο Μ(x0,y0) ανήκει στη Cφ εφόσον φ(x0)=y0 που δεν το γνωρίζουμε. Επομένως το σημείο (x0,φ(x0)) δεν συμπίπτει απαραίτητα με το Μ. Το (x0,φ(x0)) είναι σημείο καμπής της Cφ εφόσον αλλάζει το πρόσημο της φ '' εκατέρωθεν του x0 που επίσης δεν γνωρίζουμε. Η πληροφορία φ΄΄(x0)=0 δεν επαρκεί για να είναι το (x0,φ(x0)) είναι σημείο καμπής της Cφ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
P@NT?LO$
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
i Να μελετησετε ως προς τη μονοτονια και τα ακροτατα και να βρειτε τις ριζες και το προσημο της συναρτησης
ii Να μελετησετε ως προς τα ακροτατα τη συναρτηση
iii Να αποδειξετε οτι οι γραφικες παραστασεις των συναρτησεων
την θελω για αυριο το μεσημερι...ας την λυσει καποιος,παρακαλω...
![hmmm :hmm: :hmm:](https://www.e-steki.gr/images/smilies/hmmm.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 31 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 226 μέλη διάβασαν αυτό το θέμα:
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.