antwwwnis
Διάσημο μέλος


Διαδοχικά
z1^n=ai
sqrt(2)^n (1+i)^n=ai
(1+i)^n=ki
Και διακρίνουμε 4 περιπτώσεις, αυτες με τα υπόλοιπα του n με διαιρέτη το 4.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος


Όπως βλέπεις η πρώτη φορά που εμφανίζεται φανταστικός αριθμός είναι για
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


z1^n φανταστικός, έστω z1^n=ai, a πραγματικός.
Διαδοχικά
z1^n=ai
sqrt(2)^n (1+i)^n=ai
(1+i)^n=ki
Και διακρίνουμε 4 περιπτώσεις, αυτες με τα υπόλοιπα του n με διαιρέτη το 4.
Η παράσταση μηδενίζεται όταν, όταν δηλαδή ο
είναι φανταστικός. Για ποια n γίνεται αυτό;
Όπως βλέπεις η πρώτη φορά που εμφανίζεται φανταστικός αριθμός είναι για. Αν συνεχίσεις αυτή την διαδικασία θα δεις ότι η εμφάνιση φανταστικού επαναλαμβάνεται από εκεί κι έπειτα κάθε τέσσερα βήματα. Η επόμενη εμφάνιση δηλαδή είναι για
κ.ο.κ. Έτσι λοιπόν συμπεραίνουμε ότι η παράσταση μηδενίζεται για
![]()
Σας ευχαριστώ και τους 2!

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος


[LATEX]{ z }^{ 2 }+z+1=0[/LATEX]
A)I)να αποδειξετε z^3=1 και να υπολογισετε την τιμη της παραστασης [LATEX]S={ z }^{ 95 }+{ z }^{ 111 }+{ z }^{ 121 }[/LATEX]
II)NΔΟ [LATEX]{ \left( 2z+1 \right) }^{ 2014 }[/LATEX]ειναι αρνητικος πραγματικος αριθμος.
Β)I)Να βρειτε τους z1,z2 που ικανοποιουν την ισοτητα Im(z1)>0
Γ)ΝΔΟ οι εικονες των Α,Β,Γ των z0=1,z1,z2 σχηματιζουν ισοπλευρο τριγωνο.
Δ)Αν η εικονα Μ ενος μιγαδικου w βρισκεται στον περιγεγραμμενο κυκλο ,να αποδειξετε (ΑΜ)^2+(ΒΜ)^2+(ΓΜ)^2=6
εχω λυσει το Αι)....θα ηθελα αν μπορουσε καποιος να με βοηθησει με τα υπολοιπα ερωτηματα...και να επαληθευσει για το Αι οτι η παρασταση ισουται με 1.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


και εχω καποιες ασκησεις
λεει εστω1
2)να βρειτε τα α,βΕR ωστε να υπαρχει το οριο της συναρτησης
αυτες ειναι! θελω να δω πως γινονται μηπως και καταφερω να κανω και κατι αλλα ερωτηματα

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


Θα σου περιγράψω τις λύσεις.λοιπον εχω μπει στα μη πεπερασμενα ορια ΧοεR
και εχω καποιες ασκησεις
λεει εστω1να βρειτε τα ορια :
,
2)να βρειτε τα α,βΕR ωστε να υπαρχει το οριο της συναρτησης,x>1
,x<1 στο σημειο x0=1
αυτες ειναι! θελω να δω πως γινονται μηπως και καταφερω να κανω και κατι αλλα ερωτηματα![]()
1) Για χ=1 ο αριθμητής γίνεται 6 και ο παρονομαστής μηδέν. Αρα το κλάσμα απειρίζεται. Αλλά προς το + άπειρο ή προς το - άπειρο? Εξετάζω το πρόσημο του παρονομαστή λίγο πριν μηδενιστεί. Ο παρονομαστής γράφεται (χ-1)(χ-4). Για χ=1 η χ-4=-3<0 αλλά η χ-1>0 όταν χ-->1 εκ δεξιών.Τότε ο παρονομαστής αρνητικός και το κλάσμα --> στο πλην άπειρο, ενώ χ-1<0 όταν χ-->1 εξ αριστερών, ο παρονομαστής γίνεται θετικός και το κλάσμα --> στο συν άπειρο.
2) Οταν χ>1 δηλ. χ--> στο 1 εκ δεξιών το κλάσμα γίνεται 0/0 γιαυτό πολ/ζω με τη συζυγή παράσταση του αριθμητή και τους δύο όρους και με την αντικατάσταση βρίσκω f=1/2.
Τα ίδια πρέπει να συμβαίνουν και όταν χ<1, δηλ. χ--> 1 εξ αριστερών. Ο αριθμητής πρέπει να διαιρείται ακριβώς από τον παρονομαστή. Κάνοντας τη διαίρεση βρίσκω υπόλοιπο α+β-1 το οποίο πρέπει να είναι =0. Τότε β=1-α και η f(x)=(x-1)(x+1+α)/(χ-1)=χ+1+α και εφ όσο υπάρχει το όριο αυτό για χ=1 πρέπει να ισούται με 1/2 Αρα 1+1+α=1/2 ==> α=-3/2 και β=1+3/2=5/2
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Vicky13
Δραστήριο μέλος


α)Να δείξετε ότι |4z-8+i|=1
β)Να βρεθεί το σύνολο τιμών του |4z-5+3i|
2)Ισχύει |6z+1|=|4z-1|
α) Να βρεθεί η τιμή |2z+1|
β)Να βρεθεί το σύνολο τιμών του |2z-i|
Βοηθήστε με :/
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


Θα σου περιγράψω τις λύσεις.
1) Για χ=1 ο αριθμητής γίνεται 6 και ο παρονομαστής μηδέν. Αρα το κλάσμα απειρίζεται. Αλλά προς το + άπειρο ή προς το - άπειρο? Εξετάζω το πρόσημο του παρονομαστή λίγο πριν μηδενιστεί. Ο παρονομαστής γράφεται (χ-1)(χ-4). Για χ=1 η χ-4=-3<0 αλλά η χ-1>0 όταν χ-->1 εκ δεξιών.Τότε ο παρονομαστής αρνητικός και το κλάσμα --> στο πλην άπειρο, ενώ χ-1<0 όταν χ-->1 εξ αριστερών, ο παρονομαστής γίνεται θετικός και το κλάσμα --> στο συν άπειρο.
2) Οταν χ>1 δηλ. χ--> στο 1 εκ δεξιών το κλάσμα γίνεται 0/0 γιαυτό πολ/ζω με τη συζυγή παράσταση του αριθμητή και τους δύο όρους και με την αντικατάσταση βρίσκω f=1/2.
Τα ίδια πρέπει να συμβαίνουν και όταν χ<1, δηλ. χ--> 1 εξ αριστερών. Ο αριθμητής πρέπει να διαιρείται ακριβώς από τον παρονομαστή. Κάνοντας τη διαίρεση βρίσκω υπόλοιπο α+β-1 το οποίο πρέπει να είναι =0. Τότε β=1-α και η f(x)=(x-1)(x+1+α)/(χ-1)=χ+1+α και εφ όσο υπάρχει το όριο αυτό για χ=1 πρέπει να ισούται με 1/2 Αρα 1+1+α=1/2 ==> α=-3/2 και β=1+3/2=5/2
ευχαριστω νομιζω πως καταλαβα ,ελπιζω να λυσω και τις υπολοιπες που εχω

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Vicky13
Δραστήριο μέλος


α)Να δείξετε ότι |4z-8+i|=1
β)Να βρεθεί το σύνολο τιμών του |4z-5+3i|
2)Ισχύει |6z+1|=|4z-1|
α) Να βρεθεί η τιμή |2z+1|
β)Να βρεθεί το σύνολο τιμών του |2z-i|
Βοηθήστε με :/
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


1)1)Έστω μιγαδικός z με z<>2 για το οποίο ισχύει Im(z)/ |z-2|^2 + |1-iρίζα3|=0
α)Να δείξετε ότι |4z-8+i|=1
β)Να βρεθεί το σύνολο τιμών του |4z-5+3i|
2)Ισχύει |6z+1|=|4z-1|
α) Να βρεθεί η τιμή |2z+1|
β)Να βρεθεί το σύνολο τιμών του |2z-i|
Βοηθήστε με :/
Από τη σχέση που δίνει για z=x+iy προκύπτει y/[(x-2)^2+y^2] +2=0 (1) ==> (x-2)^2+y^2+y/2=0 Τότε |4z-8+i|=|4(x-2)+(4y+1)i|και λόγω της (1) έχω
β)Τη λύση δίνει πιο κάτω ο Κώστας
2) Και εδώ από τα δεδομένα καταλήγω στη σχέση χ²+χ+y²=0 την οποία χρησιμοποιώ στις άλλες σχέσεις και τις βρίσκω την α)=1
β) (x+½)²+y²=(½)² και
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος


Τα χ,y όμως έχουν μία σχέση εξάρτησης μεταξύ τους η οποία καθορίζεται από την σχέση που δίνεται στην αρχή. Πιστεύω ότι αν δεν καταλήξουμε σε κάτι που να έχει μόνο y ή μόνο χ δεν μπορούμε να εξάγουμε συμπέρασμα για το σύνολο τιμών. Η άποψή μου για το ii) υποερώτημα είναι η εξής:
Από την δοθείσα σχέση
με αντικατάσταση
Άρα ο γεωμετρικός τόπος των μιγαδικών αυτών είναι κύκλος με
...δεν ασχολήθηκα με την δεύτερη άσκηση αλλά φαίνεται παρόμοια.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
t00nS
Εκκολαπτόμενο μέλος


1)να βρείτε το σύνολο τιμών των f(x)=-7x^3+5x+11x+5,χε[0,3]
2)f(x)=5x-3/x-1,χε[1,2]
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Βλα
Πολύ δραστήριο μέλος


2 ασκησούλες..
1)να βρείτε το σύνολο τιμών των f(x)=-7x^3+5x+11x+5,χε[0,3]
2)f(x)=5x-3/x-1,χε[1,2]
Μήπως έχεις γράψει λάθος την εκφώνηση στην 1)?
Γιατί γράαφεις "11χ+5χ".
Μήπως υπάρχει κάποιο τετράγωνο ή κάτι τέτοιο?
Γιατί αλλιώς θα έγραφες απλά 16χ
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


1) δινεται η συναρτηση f(x)
να βρειτε τις τιμες των a.bER για τις οποιες ειναι
2) να βρεθει το οριο :
αυτες ηταν οι ασκησεις ειχα και κατι αλλες, αλλα τις ελυσα τωρα με αυτες χρειαζεται να παρουμε περιπτωσεις νομιζω

οποιος προσπαθησει να λυσει τις ασκσεις θα ηθελα να μου τις εξηγησει λιγο αναλυτικα και αν μπορει να τις γραψει σε latex για να τις καταλαβω πιο ευκολα (για μενα πιο ευκολο ειναι να γραφεις σε latex) ευχαριστω εκ'των προτερων
τιποτα ε?

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος


Για χ κοντά στο 2 είναι
οπότε
Αντικαθιστούμε στην (1) και βρίσκουμε
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος


Παρατήρησε ότι
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος


1)εστω η παραγωγισιμη συναρτηση [LATEX]f:(0,\infty )\rightarrow R[/LATEX]για την οποια ισχυει:[LATEX]f^{ 3 }\left( x \right) +{ x }^{ 3 }=xf\left ( x \right) x>0[/LATEX]
Αν η ευθεια ε:ψ+χ-1=0 εφαπτεται στην Cf στο Χο,να βρειτε το Χο.
2)Αν η F ειναι συνεχης στο R και [LATEX]\lim _{ χ\rightarrow 1 }{ \frac { f\left( x \right) -\sqrt {x+3 } }{x-1 } =3 } [/LATEX]
i)Ν.Δ.Ο η f ειναι παραγωγισιμη στο Χο=1
ii)να βρεθει η εφαπτομενη της Cf στο Χο=1
3)εστω η συναρτηση f(x)=x+lnx
i)Ν.Δ.Ο υπαρχει η συναρτηση [LATEX]f^{ -1 }[/LATEX]
ii)Να βρεθει η εφαπτομενη της γραφικης παραστασης της [LATEX]f^{ -1 }[/LATEX]στο Χο=-2

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


να αποδείξετε ότι:
i) όταν το σημείο Ρ κινείται στη μεσοκάθετο ευθεία του τμήματος με άκρα τα σημεία Α(0,1) και Β(-2,1), τότε:
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 7 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 226 μέλη διάβασαν αυτό το θέμα:
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.