kesmarag
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kesmarag
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Θέμα Α
1. Να χαρακτηρίσετε τις επόμενες προτάσεις ως σωστές ή λάθος
i) Δεν υπάρχει περιοδική συνάρτηση η οποία είναι 1-1
ii) Εάν
iii) Οι συναρτήσεις
iv) Εάν μια από τις
v) Εάν
2. Να αποδείξετε ότι δεν υπάρχει συνάρτηση
Θέμα Β
1. Να αποδείξετε ότι η εξίσωση
έχει μοναδική λύση στο
2. Έστω
i)
ii)
Να υπολογίσετε το
Θέμα Γ
Έστω
i)
ii)
Να δείξετε ότι οι συναρτήσεις
Θέμα Δ
Εάν
i) Να δείξετε ότι
ii) Να δείξετε ότι
iii) Να δείξετε ότι εάν
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χαρουλιτα
Διάσημο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Όμορφα, βάζω και το σχήμα.
![]()
Ας βάλω και μία αλγεβρική λύση έτσι για να υπάρχει.
Λήμμα
Ανμε
τότε
Απόδειξη
. Θέτουμε
και έχουμε:
Hαληθεύει μόνο αν
και τότε υψώνοντας στο τετράγωνο προκύπτει
. Άρα
Επιστρέφοντας στην άσκηση λοιπόν, η δεύτερη δοθείσα σχέση γράφεται
οπότε από το πάνω λήμμα με
θα έχουμε ότι
απ΄όπου παίρνοντας μέτρα βρίσκουμε ότιαφού
. Συνεπώς:
αποδεικνύω ότι |z1-z2|² + |z1+z2|²=2|z1|+2|z2|
και μετά λύνω ως προς τον άγνωστο και λύθηκε, σωστά; (θεωρώ |z1|=|z2|=1 αφου x²+y²-2y=0 (z1=z2=x+yi)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Ευχαριστώ για την παρέμβαση!
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
labis777
Νεοφερμένος
trick
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Η συνάρτηση f R->R είναι δυο φορές παραγωγίσιμη στο R και για κάθε α,β>0 ισχύει f(αβ)=f(α)+f(β).
Να αποδείξετε ότι (x^2)*f"(x)=(y^2)*f"(y), για κάθε x,y>0.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Ανεβάζω μια που είχα στις παραγώγους για το φροντιστήριο και μου άρεσε:
Η συνάρτηση f R->R είναι δυο φορές παραγωγίσιμη στο R και για κάθε α,β>0 ισχύει f(αβ)=f(α)+f(β).
Να αποδείξετε ότι (x^2)*f"(x)=(y^2)*f"(y), για κάθε x,y>0.
Αν κατάλαβα καλά, η f είναι 2 φορές παραγωγίσιμη στο R αλλά η σχέση f(xy)=f(x)+f(y) ισχύει για x, y στο (0,+άπειρο) και όχι σε όλο το R. Αν είναι έτσι τότε η άσκηση δίνει περιττά δεδομένα καθώς αν έλεγε μόνο ότι είναι συνεχής στο R βγαίνει.
Αφού η f είναι παραγωγίσιμη στο R τότε είναι συνεχής στο R και επομένως και στο 0, οπότε ισχύει:
lim(x->0-)f(x)=lim(x->0+)=f(0)
Η σχέση f(xy)=f(x)+f(y) ισχύει για x>0 και y>0. Όταν το y τείνει στο 0 από θετικές τιμές έχουμε:
lim(y->0+)f(xy)=lim(x->0+)(f(x)+f(y)) => f(x*0)=f(x)+f(0) => f(0)=f(x)+f(0) => f(x)=0
Άρα f(x)=0 για κάθε x>0 που σημαίνει ότι f΄(x)=f΄΄(x)=0 για κάθε x στο (0,+άπειρο) οπότε (x^2)f΄΄(x)=(y^2)f΄΄(y)=0 για κάθε x,y>0
Η σχέση f(xy)=f(x)+f(y) όπου x,y>0 ισχύει για όλες τις συναρτήσεις της μορφής f(x)=clnx, x>0 ή g(x)=cln|x|, x ανήκει R* όπου c ανήκει R σταθερά, αλλά η f σε αυτή την περίπτωση ορίζεται στο (0,+άπειρο) και όχι στο R ενώ η g ορίζεται στο R*.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Από την συναρτησιακή σχέση για
και το ζητούμενο έπεται.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Η εκφώνηση λέει,όμως δεν ισχύει κατ'ανάγκη
. Πάντως η ιδέα σου πράγματι δίνει μία πολύ απλούστερη λύση. Από την ταυτότητα που χρησιμοποιείς είναι:
Ευχαριστώ για την παρέμβαση!
χοχοχο, όντως δε το πρόσεξα
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
z²+w²=zw
α) ισχύουν οι σχέσεις
z³=z²w-w²z => |z|³=|z²w - w²z|
w²=zw²-wz² => |w|³=|-(z²w - w²z|=|z²w - w²z|
αρα |w|³=|z|³ => |w|=|z|
β) αρκεί να δείξω ότι |z-w|=|z|=|w| , στο προηγούμενο ερώτημα απόδειξα ότι |z|=|w| , τωρα αρκεί να δειξω |z-w|=|z| ή |z-w|=w
ισχύει z²+w²=zw <=> z²+w²-zw=0 <=> z(z-w) + w² = 0 <=> z-w = - w² / z (αφου z≠0) => |z-w| = |w|²/|z| => |z-w|= |z|²/|z|=|z|
Β ΘΕΜΑ
f(f(x))+f(x)=e^x-1
έστω x1,x2 E (0,+oo) τ.ω. : f(x1)=f(x2) (σχέση 1) => f(f(x1)=f(f(x2)) (σχέση 2)
πρόσθετω κατα μέλη τις (1),(2) και έχω f(x1)+f(f(x1))=f(x2)+f(f(x2)) <=> e^x1 - 1 = e^x2 - 1 <=> x1=x2
αρα η f είναι 1-1
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
labis777
Νεοφερμένος
drosos
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
α1)
α2)
Πρέπει
θετω
α τροπος
Aρα θα υπαρχει ενα
Και αφου η f ειναι γνησιως αυξουσα ειναι κ μοναδικη.
β τροπος
Η f ειναι συνεχης και γνησιως αυξουσα αρα το συνολο τιμων της ειναι το R οποτε
α3)
Αφου απο κριτηριο παρεμβολης ημχ/χ=0 και 1/+oo=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
test generator;
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
drosos
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
β1)
Αρα η h γνησιως αυξουσα στο R οποτε και 1-1.
β2)Παραγωγιζοντας κατα μελη:
Αρα γνησιως αυξουσα στο R οποτε και 1-1 συνεπως αντιστρεφεται.
για χ=0 εχω:
αρα f(0)=0
β3)
θετω
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
drosos
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Δίνεται
i)
ii)
iii)
Να αποδειξετε οτι η
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 278211
Επισκέπτης
drosos
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Χαμόγελο :) :)](https://www.e-steki.gr/images/smilies/smilenew.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Και ενας ηλίθιος τρόπος για να χρησιμοποιήσω το δεδομένο για να βρω το f(0) στο Β θέμα, οτι η h είναι 1-1, θέτω x=0 στην σχέση και εχω
ƒ ³ (0) +3 ƒ (0) = 0 <=> h( ƒ (0) )=0 <=> h( f(0) )=h(0) <=> f(0)=0
το Γ θέμα δε μου βγήκε με την πρώτη προσπάθεια.
edit: σίγουρα λύνετε το Γ; :-P
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
drosos
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Aξιοποιωντας οτι ειναι πραγματικος ο z/w
ΥΓ: Ωραιος τροπος για να βρεις το f(0)
![Κλείνω μάτι ;) ;)](https://www.e-steki.gr/images/smilies/wink.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 15 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 287 μέλη διάβασαν αυτό το θέμα:
- ggl
- ioanna2007
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.