bobiras11
Εκκολαπτόμενο μέλος
2)Εστω συναρτηση f:R-->R, οπου α>0, ετσι ωστε να ισχυει για καθε
α)Να αποδειξετε οτι υπαρχει σταθερος αριθμος c ωστε για καθε να ισχυει
β)Nα μελετησετε την f ως προς την μονοτονια.
για το α ερωτημα πρεπει να βρω τον τυπο της f ?? δεν μ βγαινει με τπτ..
To a το έχω ξαναδεί κάπου αλλού. Μόνο που εκεί έδινε ότι η f είναι πολυωνυμική. Δεν ξέρω άμα γίνεται με κανόνες παραγώγισης να βγάλεις μια συνάρτηση. Σε εκείνη την άσκηση που είχα λύσει πάντως ξεκινούσα λέγοντας έτσι ότι η f είναι ν βαθμού. Η f' είναι ν-1 βαθμού και πάει λέγοντας..
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
manos66
Εκκολαπτόμενο μέλος
Δεν γράφουμε
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
18vasilis
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
RORY
Νεοφερμένος
καλησπερα σαααας! σορρυ αν σας ταλαιπωρω αλλα οποιος εχει την διαθεση να βοηθησειιιι... ειναι 3 ασκησουλες! εκπεμπω SOS
1)α)Να μελετησετε ως προς την μονοτονια την συναρτηση με τύπο
β)Να βρειτε το λεR ωστε να ισχυει
2)Εστω συναρτηση f:R-->R, οπου α>0, ετσι ωστε να ισχυει για καθε
α)Να αποδειξετε οτι υπαρχει σταθερος αριθμος c ωστε για καθε να ισχυει
β)Nα μελετησετε την f ως προς την μονοτονια.
3)Εστω η συναρτηση f:R-->R η οποια ειναι παραγωγισιμη με συνεχη πρωτη παραγωγο και τετοια, ωστε και . Nα αποδειξετε οτι:
i)
ii)Η συναρτηση , δεν ειναι 1-1
iii)Υπαρχει τετοιος ωστε
δεν ξέρω latex ίσωσ δυσκολευτείς λίγο.
1α)f'(x)=α^χlnα>0 άρα f γνησίως αύξουσα.
1β)Το β μελος γίνεται -λ(λ-2)lnα+(λ-2)lnα.Τα πάμε όλα στο πρώτο και παρατηρώ ότι είναι το f(λ(λ-2)-f(λ-2)=0 ή f(λ(λ-2))=f(λ-2) Όμως η f είναι γν.αύξουσα άρα 1-1.
Οπότε αρκει να ισχυει λ(λ-2)=λ-2 κτλ
2.Θα παραγωγίσω την σχέση που δίνεται.Πρώτα όμως θα αποδείξουμε οότι υπάρχει η δεύτερη παράγωγος.
limf'(x)-f'(x0)/x-x0=πολλ.τοf'(x)+f'(x0)στον αριθμητη και στον παρον.και κανω την διαφορά τετραγώνων.=lim(f'(x)^2-f'(x0)^2)/(x-x0)(f'(x)+f'(x0)=lim(2(f(x)-f(x0))/(x-x0)(f'(x)+f'(x0))=το όριο υπάρχει κι\αι ισούται με=2f'(x0)/2f'(x0)=1
Παραγωγίζω την αρχικη σχέση.
2f'(x)f"(x)=2f'(x) επειδή f'(x) όχι μηδέν παίρνω ότι f''(x)=1.Oλοκληρώνοντας 2 φορρές παίρνω το ζητούμενο.
β)γνωστο
3)Χρησιμοποιώ ολοκλήρωση κατά παράγοντες
ολοκληρωμα από 1έως3 της xf'(x)=[xf(x)](1εως3)-ολοκλήρωμα απο 1 έως3 της f(x) σχεση 1
ολοκλ.από 1 έως 3 τησ f(x)=oλοκλ.απο 1 έως 2 της f(x)+ολοκλ.από 2 έως 3 της f(x) σχέση 2
Αντικαθιστώ τις σχέσεις που δίνει η άσκηση στην σχέση 2 και μετά την σχέση 2 στην 1
και παίρνω ολοκλ.χf'(x) από 1 έως 3=0
Αυτό είναι το ζητούμενο αν το σπάσω σε δύο ολοκληρώματα και αλλάξω μέλη και πλευρικά όρια λογω του μείον.
2)Πράγματι γιατί g(1)=g(3)=0
3)Για την g του β ερωτήματος ισχύει:
g συνεχης στο [1,3],παραγωγίσιμη στο (1,3) και g(1)=g(3).από θ Rοlle
υπάρχει ξε(1,3) με g'(ξ)=0 ή ξf'(ξ)=0 ή f'(ξ)=0 επειδή ξ διάφορο του μηδέν.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vanato07
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
RORY
Νεοφερμένος
καλησπερα σαααας! σορρυ αν σας ταλαιπωρω αλλα οποιος εχει την διαθεση να βοηθησειιιι... ειναι 3 ασκησουλες! εκπεμπω SOS
1)α)Να μελετησετε ως προς την μονοτονια την συναρτηση με τύπο
β)Να βρειτε το λεR ωστε να ισχυει
2)Εστω συναρτηση f:R-->R, οπου α>0, ετσι ωστε να ισχυει για καθε
α)Να αποδειξετε οτι υπαρχει σταθερος αριθμος c ωστε για καθε να ισχυει
β)Nα μελετησετε την f ως προς την μονοτονια.
3)Εστω η συναρτηση f:R-->R η οποια ειναι παραγωγισιμη με συνεχη πρωτη παραγωγο και τετοια, ωστε και . Nα αποδειξετε οτι:
i)
ii)Η συναρτηση , δεν ειναι 1-1
iii)Υπαρχει τετοιος ωστε
δεν ξέρω latex ίσωσ δυσκολευτείς λίγο.
1.f'(x)=a^xlna Aν α=1 είναι σταθερή.Αν α>1 η Φ(χ) είναι γνησίως αύξουσα,αν 0<α<1 είναι γνησίως φθίνουσα.
Η σχέση για α=1 ισχύει. Εστω α διάφορο του 1.Στο β mέλος της σχέσης παίρνω -(λ-2)λlna+(λ-2)lna. Tα πάω στο πρώτο
και παίρνω f(λ(λ-2)=f(λ-2).Η φ είναι 1-1 άρα πρέπει λ(λ-2)=λ-2
2.....Θα παραγωγίσω την σχέση που δίνεται.Πρώτα όμως θα αποδείξουμε οότι υπάρχει η δεύτερη παράγωγος.
limf'(x)-f'(x0)/x-x0=πολλ.τοf'(x)+f'(x0)στον αριθμητη και στον παρον.και κανω την διαφορά τετραγώνων.=lim(f'(x)^2-f'(x0)^2)/(x-x0)(f'(x)+f'(x0)=lim(2(f(x)-f(x0))/(x-x0)(f'(x)+f'(x0))=το όριο υπάρχει κιαι ισούται με=2f'(x0)/2f'(x0)=1
Παραγωγίζω την αρχικη σχέση.
2f'(x)f"(x)=2f'(x) επειδή f'(x) όχι μηδέν παίρνω ότι f''(x)=1.Oλοκληρώνοντας 2 φορρές παίρνω το ζητούμενο.
β)γνωστο
3)Χρησιμοποιώ ολοκλήρωση κατά παράγοντες
ολοκληρωμα από 1έως3 της xf'(x)=[xf(x)](1εως3)-ολοκλήρωμα απο 1 έως3 της f(x) σχεση 1
ολοκλ.από 1 έως 3 τησ f(x)=oλοκλ.απο 1 έως 2 της f(x)+ολοκλ.από 2 έως 3 της f(x) σχέση 2
Αντικαθιστώ τις σχέσεις που δίνει η άσκηση στην σχέση 2 και μετά την σχέση 2 στην 1
και παίρνω ολοκλ.χf'(x) από 1 έως 3=0
Αυτό είναι το ζητούμενο αν το σπάσω σε δύο ολοκληρώματα και αλλάξω μέλη και πλευρικά όρια λογω του μείον.
2)Πράγματι γιατί g(1)=g(3)=0
3)Για την g του β ερωτήματος ισχύει:
g συνεχης στο [1,3],παραγωγίσιμη στο (1,3) και g(1)=g(3).από θ Rοlle
υπάρχει ξε(1,3) με g'(ξ)=0 ή ξf'(ξ)=0 ή f'(ξ)=0 επειδή ξ διάφορο του μηδέν.klk
-----------------------------------------
έχεις δίκιο vanato.ευχαριστώ.Rory το lna>0 γιατι ισχυει?
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
dimitricc
Νεοφερμένος
δεν ξέρω latex ίσωσ δυσκολευτείς λίγο.
1α)f'(x)=α^χlnα>0 άρα f γνησίως αύξουσα.
1β)Το β μελος γίνεται -λ(λ-2)lnα+(λ-2)lnα.Τα πάμε όλα στο πρώτο και παρατηρώ ότι είναι το f(λ(λ-2)-f(λ-2)=0 ή f(λ(λ-2))=f(λ-2) Όμως η f είναι γν.αύξουσα άρα 1-1.
Οπότε αρκει να ισχυει λ(λ-2)=λ-2 κτλ
2.Θα παραγωγίσω την σχέση που δίνεται.Πρώτα όμως θα αποδείξουμε οότι υπάρχει η δεύτερη παράγωγος.
limf'(x)-f'(x0)/x-x0=πολλ.τοf'(x)+f'(x0)στον αριθμητη και στον παρον.και κανω την διαφορά τετραγώνων.=lim(f'(x)^2-f'(x0)^2)/(x-x0)(f'(x)+f'(x0)=lim(2(f(x)-f(x0))/(x-x0)(f'(x)+f'(x0))=το όριο υπάρχει κιαι ισούται με=2f'(x0)/2f'(x0)=1
Παραγωγίζω την αρχικη σχέση.
2f'(x)f"(x)=2f'(x) επειδή f'(x) όχι μηδέν παίρνω ότι f''(x)=1.Oλοκληρώνοντας 2 φορρές παίρνω το ζητούμενο.
β)γνωστο
3)Χρησιμοποιώ ολοκλήρωση κατά παράγοντες
ολοκληρωμα από 1έως3 της xf'(x)=[xf(x)](1εως3)-ολοκλήρωμα απο 1 έως3 της f(x) σχεση 1
ολοκλ.από 1 έως 3 τησ f(x)=oλοκλ.απο 1 έως 2 της f(x)+ολοκλ.από 2 έως 3 της f(x) σχέση 2
Αντικαθιστώ τις σχέσεις που δίνει η άσκηση στην σχέση 2 και μετά την σχέση 2 στην 1
και παίρνω ολοκλ.χf'(x) από 1 έως 3=0
Αυτό είναι το ζητούμενο αν το σπάσω σε δύο ολοκληρώματα και αλλάξω μέλη και πλευρικά όρια λογω του μείον.
2)Πράγματι γιατί g(1)=g(3)=0
3)Για την g του β ερωτήματος ισχύει:
g συνεχης στο [1,3],παραγωγίσιμη στο (1,3) και g(1)=g(3).από θ Rοlle
υπάρχει ξε(1,3) με g'(ξ)=0 ή ξf'(ξ)=0 ή f'(ξ)=0 επειδή ξ διάφορο του μηδέν.
προσεξε κατι,,στο σημειο οπου πολλαπλασιαζεις πανω και κατω με το f'(x ) + f'( xo) δν γνωριζεις οτι η f' δν ειναι η σταθερη συναρτηση 0 οποτε δν μπορεις να το κανεις αυτο παρα μονο υποθετοντας οτι δεν ειναι...πρεπει να ελεγξεις επομενως και την περιπτωση να ειναι η μηδενικη συναρτηση κατι που σημαινει λογω της υπο8εσης βεβαια οτι η f ειναι και αυτη η μηδενικη...και κανεις δεν αποκλειει φυσικα το να ειναι...αρα θα πρεπει πιθανον να δινει η ασκηση καποια πληροφορια για να αποκλεισει αυτο το ενδεχομενο...διαφορετικα η f ΔΕΝ ειναι απαραιτητα η ζητουμενη,,,
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rolingstones
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mangkac
Εκκολαπτόμενο μέλος
Edit: δεν ξερω γιατι δεν το γραφει καθαρα αλλα η ριζα αφορα ολο τον παρονομαστη.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Τζίνα
Νεοφερμένος
Αν αποδείξουμε κάπως ότι το όριο του κάθε ολοκληρώματος κάνει +oo μπορούμε να χρησιμοποιήσουμε κανόνες de l'hospital και μετά βγαίνει..αυτό δε θα μπορούσαμε να το χρησιμοποιήσουμε στην αρχή, γιατί βγαίνει -oo +oo (απροσδιόριστη μορφή)..
Αν δεν αποδεικνύεται πάντως, αυτά που έγραψα είναι βλακείες...
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
george_k214
Εκκολαπτόμενο μέλος
Επίσης έχουμε:
και άρα από κριτήριο παρεμβολής προκύπτει:
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mangkac
Εκκολαπτόμενο μέλος
Μαλλον πρεπει να βγαινει οπως το λεει ο Γιωργος γιατι στο απο πανω ερωτημα σε εχει βαλει να βρεις μονοτονια της f(x)... Ευχαριστω και τους 2 παντως..
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
dimitricc
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
cos
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
maira_leo
Νεοφερμένος
i)η f ειναι 1-1
ii)η f δεν ειναι γνησιως αυξουσα
iii)αν f(0)=1 τοτε
2)Δινετε ο μιγαδικος αριθμος z τετοιος,ωστε και η συναρτηση f:R-->R με τυπο για καθε . Nα αποδειξετε οτι:
i) για καθε
ii)η f ειναι συνεχης
iii)Υπαρχει τετοιος,ωστε
3)Nα δειξετε οτι
:thanks:
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ledzeppelinick
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
maira_leo
Νεοφερμένος
Ναιιιι αν μπορεις
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ledzeppelinick
Πολύ δραστήριο μέλος
-----------------------------------------
και επισης τα α κ β του διαστηματος στο 2ο θεμα ειναι τυχαια ή το Re(z) k Im(z) αντιστοιχα???
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
maira_leo
Νεοφερμένος
το |z|-1 μηπως ειναι ισο με κατι? γιατι ειναι λιγο φλου ετσι..
-----------------------------------------
και επισης τα α κ β του διαστηματος στο 2ο θεμα ειναι τυχαια ή το Re(z) k Im(z) αντιστοιχα???
δεν διευκρινιζει κατι παραπανω:/ αυτα ακριβως γραφει.. παιζει να εχει και τυπογραφικο λαθος γτ ειχε κι αλλα το συγκεκριμενο φυλλαδιο και να εννοει |z|=1
δεν εχω ιδεα..
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ledzeppelinick
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 35 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 224 μέλη διάβασαν αυτό το θέμα:
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.