


α) μετα απο πραξειςανακέραιος να λύσετε την εξίσωση![]()
![]()
β)για ποιες τιμες του ακεραιουη εξίσωση έχει ακέραιες λύσεις?![]()
για το β εφτασα καπου, για ριξτε μια ματια.
πρεπει
για
το
παίρνουμε
για
ομοια με πριν πρεπει
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
akis95
Δραστήριο μέλος






Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


(x+y+z)²=x²+y²+z²+2xy+2yz+2xz ===> από το δεδομένα της άσκησης xy+yz+zx=1 ===> xy=1-z(y+x)=1-z(2-z)=1-2z+z²=(1-z)² ΤότεΓια τους πραγματικούς αριθμούςκαι
, ισχύουν:
. Να αποδείξετε ότι:
.![]()
xyz=z(1-z)². Ομοίως xyz=y(1-y)² και xyz=x(1-x)²
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης


Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


x+4z=3xz
8y+x=5xy
2z-y=yz
Ομοίως
x+2(y+z+ω)=19
2y+3(x+z+ω)=28
3z+4(x+y+ω)=37
ω+2(x+y+z)=16
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης


Παμε για την δευτερη γιατι η πρωτη ειναι αρκετα ζορικη :Να λυθεί το σύστημα
Ομοίως
x+2(y+z+ω)=19
2y+3(x+z+ω)=28
3z+4(x+y+ω)=37
ω+2(x+y+z)=16
Προσθετω τις σχεσεις κατα μελη και παιρνω
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


Ονομάζω το άθροισμα των αγνώστων x+y+z+ω=Κ
Τότε το σύστημα γίνεται x+2(K-x)=19 ==> x=2K-19
2y+3(K-y)=28 ==> y=3K-28
3z+4(K-z)=37 ==> z=4K-37
ω+2(Κ-ω)=16 ==> ω=2Κ-16
Η βοηθητική εξίσωση γίνεται 2Κ-19+3Κ-28+4Κ-37+2Κ-16=Κ ==> 10Κ=100 ==> Κ=10
Αρα χ=2*10-19=1
y=3*10-28=2
z=4*10-37=3
ω=2*10-16=4
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.


Eγω θα λυσω την πρωτη.Να λυθεί το σύστημα
x+4z=3xz
8y+x=5xy
2z-y=yz
απο την πρωτη παίρνω
αντικαθιστω στην δευτερη
προσθετω την (2) στην τριτη
λογω της (3) στην τριτη εξισωση παιρνουμε
για z = 0
άρα
διορθωστεμε αν κανω λαθος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


Διαιρουμε την κάθε μια με το γινόμενο των αγνώστων του δεξιού μέρους και προκύπτει ένα απλό σύστημα πρώτου βαθμού με αγνώστου τους 1/χ=x', 1/y=y' , 1/z=z'. Η συνέχεια δική σας.
Επίσης να λυθεί το σύστημα (αδυναμίες)



2) Αν ισχύουν οι σχέσεις αχ+μy=0, x+y=xy, x²+y²=1 Να δειχτεί η σχέση

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης


Πάμε για το συστηματάκι :Δεν διαφωνώ με τη λύση σου, αλλά το σύνθημά μου είναι: Να είμαστε"ΕΞΥΠΝΟΙ ΤΕΜΠΕΛΗΔΕΣ"
Διαιρουμε την κάθε μια με το γινόμενο των αγνώστων του δεξιού μέρους και προκύπτει ένα απλό σύστημα πρώτου βαθμού με αγνώστου τους 1/χ=x', 1/y=y' , 1/z=z'. Η συνέχεια δική σας.
Επίσης να λυθεί το σύστημα (αδυναμίες)
![]()
![]()
![]()
Θα θέσω
Το συστηματάκι γίνεται :
Απο εδώ με προσθέσεις απαλοιφές κτλπ βγάζω
Απο εδω παιρνω το εξης συστημα :
Απο εδώ κλασικα με απαλοιφές και γνωστες κλασικες τεχνικες παιρνω ευκολα
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης


Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Αγγελική!!!
Δραστήριο μέλος


i)
ii)
iii)
iv)
v)
vi)
vii)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


Αν σε παίδεψα ΧΙΑΛΙΑ ΣΥΓΓΝΏΜΗΝ. Η πρώτη σχέση είναι λχ+μy=0. Η συνέχεια, απαλοιφή των χ, y. Αν χρειαστεί τα ξαναλέμε.Vimaproto δωσε μια υποδειξουλα σε spoiler για την δευτερη.
......Δεν διαφωνώ με τη λύση σου, αλλά το σύνθημά μου είναι: Να είμαστε"ΕΞΥΠΝΟΙ ΤΕΜΠΕΛΗΔΕΣ"
Διαιρουμε την κάθε μια με το γινόμενο των αγνώστων του δεξιού μέρους και προκύπτει ένα απλό σύστημα πρώτου βαθμού με αγνώστου τους 1/χ=x', 1/y=y' , 1/z=z'. Η συνέχεια δική σας.
Επίσης να λυθεί το σύστημα (αδυναμίες)
![]()
![]()
![]()
2) Αν ισχύουν οι σχέσεις λχ+μy=0, x+y=xy, x²+y²=1 Να δειχτεί η σχέση![]()
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Αγγελική!!!
Δραστήριο μέλος


Δίνεται η :
i),ώστε η
να έχει μία μόνο ρίζα
ii), ώστε η
να έχει ρίζες άνισες
iii),ώστε η
να μην έχει ρίζες
iv),ώστε η
να ισχύει για κάθε
v),ώστε να ισχύει
( όπου
οι ρίζες της
)
vi), ώστε να ισχύει
vii),ώστε να ισχύει
![]()
Επαναφέρω αυτήν και βάζω και άλλη:
Δίνεται η
Ισχύει
i)Εάν
ii)Εάν
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος


2) Αν ισχύουν οι σχέσεις λχ+μy=0 (1) , x+y=xy (2) , x²+y²=1 (3) Να δειχτεί η σχέση![]()
Διαιρώντας την (2) με y και χ διαδοχικά έχουμε
και λόγω της (4) είναι
Αντικαθιστώντας τις (5),(6) στην (3) παίρνουμε
Πολλαπλασιάζουμε την τελευταία σχέση με λ²μ² και παίρνουμε
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης


Επαναφέρω αυτήν και βάζω και άλλη:
Δίνεται η
Ισχύειτότε,
i)ΕάνΝα αποδειχθεί ότι η
έχει 2 ρίζες πραγματικές και άνισες
ii)ΕάνΝα αποδειχθεί ότι η
έχει ρίζες πραγματικές και άνισες μία εκ των οποίων βρίσκεται μεταξύ των
Δίνεται
![]()
Πάμε και γιαυτην :
α)Θα πάρω περιπτώσεις για το
β) Εκτος των ρίζων το τριωνυμο θα ειναι ομοσημο του
Ελπιζω να ειμαι σωστος .
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


Ισχύει
i)Εάν
Η δική μου λύση είναι η εξής:
Η αf(χ) γράφεται
Τότε επειδή το α² είναι θετικός είναι
και
Το αριστερό μέρος είναι μη αρνητικός αριθμός, άρα η Δ>0 και το τριώνυμο έχει δύο πραγματικές ρίζες άνισες.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης


τοΔίνεται η
Ισχύειτότε,
i)ΕάνΝα αποδειχθεί ότι η
έχει 2 ρίζες πραγματικές και άνισες
Η δική μου λύση είναι η εξής:
Η αf(χ) γράφεται![]()
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vimaproto
Πολύ δραστήριο μέλος


Μα ένα τριώνυμο δεν γράφεται α(χ²+βχ/α +γ/α)? Και με το α μπροστά παίρνει τη μορφή αf(x)=α²(χ²+βx/α+γ/α)τοΑπο που το βγάζεις ?
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 018946
Επισκέπτης


Αυτο όμως που βάζεις ειναι η ψιλοπαραγοντοποίημένη μορφή του τριωνυμου.Μα ένα τριώνυμο δεν γράφεται α(χ²+βχ/α +γ/α)? Και με το α μπροστά παίρνει τη μορφή αf(x)=α²(χ²+βx/α+γ/α)
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 1 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 31 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.