Και αυτή με άτοπο θα την βγάλω, but it's okay,it's an honest method

.
Έστω οτι υπάρχει κυρτή συνάρτηση ορισμένη στο R που να ικανοποιεί την σχέση:
f'(0) + 2f(1) = f'(1) + f(2) + f(0) =>
f'(0) - f'(1) = f(2) + f(0) - 2f(1) =>
Εφόσον η f είναι κυρτή στο R, η f' είναι γνησίως αύξουσα στο R. Έτσι λοιπόν :
0 < 1 =>
f'(0) < f'(1) =>
f'(0) - f'(1) < 0
Σύμφωνα με την παραπάνω :
f(2) + f(0) - 2f(1) < 0 =>
[f(2) - f(1)]/[2 - 1] - [f(1) - f(0)]/[1 - 0] < 0 =>
Απο το ΘΜΤ για την f στο [0,1] και στο [1,2] βρίσκουμε ζ1 Ε (0,1) και ζ2 Ε (1,2) τέτοια ώστε η προηγούμενη να γίνει :
f'(ζ2) - f'(ζ1) < 0 =>
f'(ζ1) > f'(ζ2) , με ζ1 < ζ2 .
Το οποίο είναι άτοπο, αφού η f' είναι γνησίως αύξουσα στο R .
Άρα δεν μπορεί να υπάρχει συνάρτηση f, κυρτή και ορισμένη στο R με την παραπάνω ιδιότητα.