
21-05-09

11:41
Πολύ καλή και σωστή η σκέψη σου αν και λίγο ελλιπής. Θέτεις
g(x)=((f(β)-1)/(x-1))+((f(γ)-1)/(x-2)), x ανήκει Β=(-άπειρο,1)U(1,2)U(2,+άπειρο)
Η g είναι συνεχής και παραγωγίσιμη στο Β και ισχύει:
g'(x)=-[((f(β)-1)/((x-1)^2))+((f(γ)-1)/((x-2)^2))]<0 για κάθε x στο Β. Εμάς μας ενδιαφέρει το (1,2). Άρα η g είναι γνησίως φθίνουσα στο (1,2).
Αν πάρεις τα πλευρικά όρια της g στο 1 και 2, με δεδομένο ότι f(β)>1 και f(γ)>1, προκύπτει:
lim(x->1+)g(x)=+άπειρο και lim(x->2-)g(x)=-άπειρο. Επειδή η g είναι συνεχής και γνησίως φθίνουσα στο (1,2) τότε η εικόνα g((1,2)) του (1,2) είναι:
g((1,2))=(lim(x->2-)g(x), lim(x->1+)g(x))=(-άπειρο,+άπειρο)=R. Επειδή 0 ανήκει στο g((1,2))=R, υπάρχει ξ στο (1,2) ώστε g(ξ)=0 και μάλιστα επειδή η g είναι γνησίως φθίνουσα τότε το ξ είναι μοναδικό. Με την σκέψη σου καταλήξαμε σε πολύ ενδιαφέρον συμπέρασμα που αν ήθελαν να δυσκολέψουν λίγο τα πράγματα θα το ζητούσαν στις εξετάσεις.
Η σκέψη σου είναι πολύ σωστή. Η μόνη έλλειψη είναι ότι δεν αποδεικνύεις ότι η g είναι γνησίως φθίνουσα στο (1,2) ώστε να βρεις το πεδίο τιμών της g((1,2)). Αν τα πλευρικά όρια τα βρήκες ίδια με μένα, τότε είσαι σωστός. Η σκέψη σου είναι σωστή αλλά δεν την εξέφρασες πολύ σωστά.
Προσωπικά νομίζω ότι θα χάσεις 2 μόρια.
Ωραία σκέψη πάντως.
-----------------------------------------
Ευχαριστω για την απαντηση..Ας γινω πιο αναλυτικος. Θεωρησα h(x)=.... στο (1,2) δικαιολογησα γιατι f(b)-1>0 , f(g)-1>0 και πηρα τα ορια οπως ειπα και τα εβγαλα ±απειρο δικαιολογώντας οτι για χ-->2- χ-2<0 και αντιστοιχα χ-1>0 για χ->1+
Η h(x) λεω ειναι συνεχης και τα ορια κανουν + απειρο το ενα και -απειρο το αλλο. Αρα Rf=(-απειρο,+απειρο) το 0 ανηκει στο R....τα υπολοιπα τα εγραψα παραπανω. Η παραγωγος σε τι μας ενδιαφερει σ αυτο το σημειο? Η μονη παραληψη που εκανα ηταν να αναφερω που ανηκει το χ0 και να παω με συνεπαγωγη απο h(x0)=0 <=> .....
Συγγνωμη αν γινομαι κουραστικος.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.