απο το βιβλιο "ολοκληρωματα" του δ.νταβου αντιγραφω μια πολυ ωραια ασκηση.
εστω f παραγωγισιμη στο [α,α+3] για την οποια υποθετουμε οτι ισχυει
dx=int_{a+1}^{a+3}f(x)dx )
.να δειξετε οτι υπαρχει

στο (α,α+3) ωστε η εφαπτομενη της στο
))
να ειναι παραλληλη στον αξονα x.
Στα παρακάτω με S(α,β)f(x)dx συμβολίζω το ορισμένο ολοκλήρωμα της f με κάτω όριο ολοκλήρωσης το α και πάνω το β. Όπου γράφω ΘΜΤΟΛ σημαίνει θεώρημα μέσης τιμής ολοκληρωτικού λογισμού. Αν είναι εκτός ύλης πρέπει να αποδειχτεί. Η απόδειξη είναι απλή και υπάρχει στο βιβλίο. Για λόγους πληρότητας την γράφω μετά τη λύση της άσκησης.
f παραγωγίσιμη [α,α+3] -> f συνεχής [α,α+3]
Από εκφώνηση έχουμε S(α,α+2)f(x)dx=S(α+1,α+3)f(x)dx ->
-> S(α,α+2)f(x)dx=S(α+1,α+2)f(x)dx+S(α+2,α+3)f(x)dx ->
-> S(α,α+2)f(x)dx=-S(α+2,α+1)f(x)dx+S(α+2,α+3)f(x)dx ->
-> S(α,α+2)f(x)dx+S(α+2,α+1)f(x)dx=S(α+2,α+3)f(x)dx ->
-> S(α,α+1)f(x)dx=S(α+2,α+3)f(x)dx
Θέτω S(α,α+1)f(x)dx=S(α+2,α+3)f(x)dx=I
f συνεχής στο [α,α+1] -> ΘΜΤΟΛ: υπάρχει ξ1 στο (α,α+1) ώστε f(ξ1)=S(α,α+1)f(x)=Ι
f συνεχής στο [α+2,α+3] -> ΘΜΤΟΛ :υπάρχει ξ2 στο (α+2,α+3) ώστε f(ξ2)=S(α+2,α+3)f(x)=Ι
Άρα f(ξ1)=f(ξ2)=I και προφανώς α<ξ1<α+1<α+2<ξ2<α+3
f συνεχής στο [ξ1,ξ2], f παραγωγίσιμη στο (ξ1,ξ2) και f(ξ1)=f(ξ2) ->
-> Θεώρημα Rolle : υπάρχει x0 στο (ξ1,ξ2) ώστε f΄(x0)=0
Εξίσωση εφαπτομένης στο Α(x0,f(x0))
y-f(x0)=f΄(x0)(x-x0) -> y=f΄(x0)x+f(x0)-x0f΄(x0) -> y=f(x0) παράλληλη στον άξονα x
ΑΠΟΔΕΙΞΗ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΟΛΟΚΛΗΡΩΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
Θεώρημα: Αν μία συνάρτηση f είναι συνεχής στο διάστημα [α,β] (α<β) τότε υπάρχει τουλάχιστον ένα ξ στο διάστημα (α,β) τέτοιο ώστε f(ξ)=S(α,β)f(t)dt/(β-α)
Επειδή η f είναι συνεχής στο [α,β], τότε η F με τύπο F(x)=S(α,x)f(t)dt είναι παραγωγίσιμη και συνεπώς και συνεχής στο [α,β] με πρώτη παράγωγο F΄(x)=f(x) για κάθε x στο [α,β]
F(α)=S(α,α)f(t)dt=0
F(β)=S(α,β)f(t)dt
F συνεχής στο [α,β] και παραγωγίσιμη στο (α,β), οπότε σύμφωνα με το θεώρημα μέσης τιμής υπάρχει τουλάχιστον ένα ξ στο διάστημα (α,β) τέτοιο ώστε
F΄(ξ)=(F(β)-F(α))/(β-α) -> f(ξ)=S(α,β)f(t)dt/(β-α)