Civilara
Περιβόητο μέλος
χμμμ ας βάλω και εγώ μια άσκηση που προέκυψε από τον τρόπο που έλυσα μια άλλη άσκηση..
εντάξει, μπορεί να λυθεί σε 2 σειρές
αν a b και a,b Ε νδο
Για βάλε α=1/e και b=1/(2e). Είναι α>b>0 και α^α<b^b. Υπάρχει λάθος.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 278211
Επισκέπτης
αααα πάλι μισή είναι α>1 και β>1 συγνώμη...
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dmitsos
Πολύ δραστήριο μέλος
Να κοιτάξω ένα λεπτό την άσκηση μήπως ξέχασα και κάτι ακόμα...
αααα πάλι μισή είναι α>1 και β>1 συγνώμη...
το οποιο ισχυει αφου και a-b>0, α>1, αρα . H ισοτητα ισχυει οτι α=β
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 278211
Επισκέπτης
γράφω και άλλη μια λύση:
1. έστω ότι α=β =>
2. έστω ότι όλα θετικά άρα
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dmitsos
Πολύ δραστήριο μέλος
"Να βρεθούν οι πραγματικοί αριθμοί για τους οποίους για α>=β ισχύει αυτό που λέμε"
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
red span
Δραστήριο μέλος
Εστω η συνάρτηση f : R-->R για την οποία υποθέτουμε ότι ισχύει
fof(x)=x για καθε χ Ε R
Να αποδειχθεί ότι
1)η f είναι συνάρτηση 1-1
2)η f έχει σύνολο τιμών το R
3)Η εξισωση f(x)=2011 έχει ακριβώς μια ρίζα η οποία να βρεθεί
4)f^-1(x)=f(x) για καθε x e R
5)Αν η f περριτη τοτε και η f^-1 είναι περριτή
6)αν η συνάρτηση g(x)=e^f(x)+e^x για καθε χ ε R ειναι συνάρτηση 1-1 τότε είναι f(x)=x για καθε x ε R
Νομιζω πως ειναι μια καλή άσκηση για επανάληψη στις συναρτήσεις
(Απο τα γραφομενα του Κωστα Γκατζουλη)
Φιλικα Χαρης
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 278211
Επισκέπτης
1) για κάθε (αφού f(x): R --> R)
έστω και άρα η f είναι 1-1.
2) έστω f(x)=y, (1)
f(y)=x => y=f^-1(x) (αφού f 1-1) => (2) (αφού f^-1: f(R)-->R)
από (1) και (2) =>
3) η f είναι 1-1 άρα f(x)=2011 έχει ακριβώς μια ρίζα.
f(x)=2011 => fof(x)=f(2011) => x=f(2011)
4) f(f(x))=x , όλα άρα f^-1(fof(x))=f^-1(x) => f(x)=f^-1(x)
5) αν η f είναι περιττή, τότε ισχύει: -f(x)=f(-x) ή f(x) = -f(-x)
f^-1(x)=f(x)=-f(-x)=-f^-1(-x) δηλαδή -f^-1(x)=f^-1(-x) άρα είναι και η f^-1 περιττή
6) δεν έχω λύσει ακόμα το ερώτημα αυτό
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
qwerty111
Πολύ δραστήριο μέλος
g(x)=e^f(x)+e^x, xεR
Θέτω όπου χ το f(x) και παίρνω: g(f(x))=e^f(f(x))+e^f(x)=e^x+e^f(x)=g(x),xεR
Δηλαδή g(f(x))=g(x) και επειδή η g είναι 1-1, f(x)=x, xεR
Ωραίο ερώτημα. Δεν θυμάμαι να έχω δει παρόμοιο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 278211
Επισκέπτης
6.
g(x)=e^f(x)+e^x, xεR
Θέτω όπου χ το g(x) και παίρνω: g(f(x))=e^f(f(x))+e^f(x)=e^x+e^f(x)=g(x),xεR
Δηλαδή g(f(x))=g(x) και επειδή η g είναι 1-1, f(x)=x, xεR
Ωραία άσκηση. Δεν θυμάμαι να έχω δει παρόμοια.
καλά λες!!! πωωωωω δεν το σκέφτηκα αυτό!!!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
red span
Δραστήριο μέλος
Λιγο διαφορετικες προσσεγισεις σε καποια ερωτηματα
2) για να αποδειξω οτι η f εχει συνολο τιμων ενα συνολο Β αρκει να δειξω οτι υπαρχει μοναδικο χ ε Α τετοιο ωστε f(x)=y συνθετοντας ,με f(x)
εχω f(f(x))=f(y) και απο την υποθεση x=f(y) ,αρα επειδη η εξισωση y=f(x) εχει λυση για οποιαδξποτε τιμη του y το συνολο τιμων της f ειναι το R
Παντως με αρεσε και η προσεγγιση του Guest 278211
5)f(f^-1(x))=x (1)
Θετω οπου χ το -χ f(f^-1(-x))=-x
λογω της 1 f(f^-1(-x))=-f(f^-1(x)(αφου η f περριτη)
f(f^-1(x))=f(-f^-1(x))
η f ειναι ''1-1''
f^-1(x)=-f^-1(x)
Αρα η f^-1 περριτη
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dmitsos
Πολύ δραστήριο μέλος
Οι ισοδυναμίες ισχύουν λόγω του χαρακτηρισμού ως 1-1 της αντίστροφης. Σορρυ αν μου ξεφεύγει κάτι, έχω να πιάσω μαθηματικα από το Μάιο.
Να κάνω μια tricky ερώτηση;
Αν μια συνάρτηση είναι 1-1, είναι και η αντίστροφή της 1-1;
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
red span
Δραστήριο μέλος
Αν η f :A-->R ειναι ''1-1'' τότε η αντίστροφη της f^-1:f(A)--->R ειναι μοναδικη και ''1-1''Έχοντας αποδείξει ότι η αντίστροφη συνάρτηση έχει πεδίο ορισμού το R, μπορούμε εύκολα να βρούμε τον τύπο της χωρίς το βοηθητικό ερώτημα ως εξής
Οι ισοδυναμίες ισχύουν λόγω του χαρακτηρισμού ως 1-1 της αντίστροφης. Σορρυ αν μου ξεφεύγει κάτι, έχω να πιάσω μαθηματικα από το Μάιο.
Να κάνω μια tricky ερώτηση;
Αν μια συνάρτηση είναι 1-1, είναι και η αντίστροφή της 1-1;
Εχω μια γεωμετρικη αποδειξη,αλλα νομιζω βγαινει με την κοινη λογικη
Φιλικα Χαρης
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Έχεις κάνει ένα σοβαρό λάθος. Μπορείς να βάλεις στη θέση του χ το f(x) ως μία άλλη μεταβλητή, αλλά δεν μπορείς να θεωρήσεις δεδομένο ότι ισχύει f(x)=x (αυτό ζητείται να αποδείξεις) και συνεπώς η ισότητα «e^f(f(x))+e^f(x)=e^x+e^f(x)» η οποία έγραψες δεν ισχύει.6.
g(x)=e^f(x)+e^x, xεR
Θέτω όπου χ το f(x) και παίρνω: g(f(x))=e^f(f(x))+e^f(x)=e^x+e^f(x)=g(x),xεR
Δηλαδή g(f(x))=g(x) και επειδή η g είναι 1-1, f(x)=x, xεR
Ωραίο ερώτημα. Δεν θυμάμαι να έχω δει παρόμοιο.
Με την προϋπόθεση, ότι θα χρησιμοποιήσεις το στοιχείο ότι η g(x) είναι 1-1 και συνεπώς από την εξίσωση που σου δίνει ( g(x)=e^f(x)+e^x) συμπεραίνεις ότι και η f(x) είναι 1-1, σωστή απάντηση είναι η παρακάτω:
Η οποία καλύτερα θα ήταν να γραφεί διαφορετικά ως εξής:
Ισχύει f(f(x))=χ.
Επειδή f είναι 1-1, ισχύει και f(f^-1(x))=x.
Επομένως ισχύει ότι: f(f^-1(x))=f(f(x)), από εδώ επειδή η f είναι 1-1 ισχύει: f^-1(x)=f(x) και επομένως f(x)=x.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vassilis498
Διακεκριμένο μέλος
Έχεις κάνει ένα σοβαρό λάθος. Μπορείς να βάλεις στη θέση του χ το f(x) ως μία άλλη μεταβλητή, αλλά δεν μπορείς να θεωρήσεις δεδομένο ότι ισχύει f(x)=x (αυτό ζητείται να αποδείξεις) και συνεπώς η ισότητα «e^f(f(x))+e^f(x)=e^x+e^f(x)» η οποία έγραψες δεν ισχύει.
Με την προϋπόθεση, ότι θα χρησιμοποιήσεις το στοιχείο ότι η g(x) είναι 1-1 και συνεπώς από την εξίσωση που σου δίνει ( g(x)=e^f(x)+e^x) συμπεραίνεις ότι και η f(x) είναι 1-1, σωστή απάντηση είναι η παρακάτω:
Η οποία καλύτερα θα ήταν να γραφεί διαφορετικά ως εξής:
Ισχύει f(f(x))=χ.
Επειδή f είναι 1-1, ισχύει και f(f^-1(x))=x.
Επομένως ισχύει ότι: f(f^-1(x))=f(f(x)), από εδώ επειδή η f είναι 1-1 ισχύει: f^-1(x)=f(x) και επομένως f(x)=x.
δε νομίζω ότι κάνει κάτι λάθος η ιδιότητα που εκμεταλλεύεται είναι το fof(x)=x ( το οποίο δίνεται ) και όχι το f(x)=x
από την άλλη δεν καταλαβαίνω πώς προκύπτει το bold.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 278211
Επισκέπτης
@ exc: Γνωρίζουμε πως η g είναι 1-1, οπότε δεν υπάρχει λάθος
Γενικά: Το 6ο ερώτημα χρειάζεται για να απαντήσουμε ότι f(x)=x, διαφορετικά δεν αποδεικνύεται. Για παράδειγμα, αν fof(x)=x μπορεί f(x)=-x.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dmitsos
Πολύ δραστήριο μέλος
Αν η f :A-->R ειναι ''1-1'' τότε η αντίστροφη της f^-1:f(A)--->R ειναι μοναδικη και ''1-1''
Εχω μια γεωμετρικη αποδειξη,αλλα νομιζω βγαινει με την κοινη λογικη
Φιλικα Χαρης
Aχ πόσο μ' αρέσει αυτό που θα κάνω τώρα
'Εχουμε f: A -> B.
A= {1,2,3}
f(1)=1, f(2)=2, f(3)=3.
B= {1,2,3,4}={f(1),f(2),f(3),4}
Όλα τα στοιχεία του Α αντιστοιχίζονται σε κάτι του Β, όμως δεν αντιστοιχίζοντα όλα του Β σε κάτι του Α, οπότε η έννοια της αντίστροφης δεν ισχύει στην περίπτωση αυτή!
Κάπου υπάρχει μια λεπτή διαφορά...και κάνει τη διαφορά
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 278211
Επισκέπτης
Αν μια συνάρτηση είναι 1-1, είναι και η αντίστροφή της 1-1;
Ναι. Αν η Df=A τότε η f και η f^-1 είναι 1-1 για κάθε
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
red span
Δραστήριο μέλος
Και εγω αυτο,λεω αλλα ο μιτσος δεν συμφωνειΝαι. Αν η Df=A τότε η f και η f^-1 είναι 1-1 για κάθε
Ας μας διαφωτισει κανενας μαθηματικος
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dmitsos
Πολύ δραστήριο μέλος
Ναι. Αν η Df=A τότε η f και η f^-1 είναι 1-1 για κάθε
Εγώ δε μίλησα πουθενά για χ μέσα στο σύνολο τιμών της f, εδώ υπάρχει η διαφορά.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
dark_knight
Νεοφερμένος
Δεν μίλησες γενικώς για χ. Ρώτησες "Αν μια συνάρτηση είναι 1-1 είναι και η αντίστροφή της 1-1;" και η απάντηση είναι ένα ξερό ναι. Προφανώς είναι 1-1 στο πεδίο ορισμού της, το οποίο εν γένει μπορεί να μην ταυτίζεται με το R, αλλά κάθε φορά που αναφέρουμε μια ιδιότητα για μια συνάρτηση φ δεν χρειάζεται να επαναλαμβάνουμε "στο πεδίο ορισμού της". Επομένως οι απαντήσεις που δόθηκαν ήταν απόλυτα σωστές (αν και δεν αιτιολογήθηκαν επαρκώς). Μάλιστα ο Χάρης ανέφερε και ότι το πεδίο ορισμού της αντίστροφης είναι το f(Α).Αρχική Δημοσίευση από dmitsos:Εγώ δε μίλησα πουθενά για χ μέσα στο σύνολο τιμών της f, εδώ υπάρχει η διαφορά.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 6 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 286 μέλη διάβασαν αυτό το θέμα:
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- ggl
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- nearos
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.