Civilara
Περιβόητο μέλος


Υπάρχουν μόνο 3 εξισώσεις που πληρούν την υπόθεση.
Έλεγξε τις εξισώσεις μία-μία. Θα δεις ότι όλες ικανοποιούν την εκφώνηση. Η αναλυτική λύση είναι πολύ μακροσκελής για να την γράψω. 3 είναι οι εξισώσεις των οποίων λύσεις δεν είναι πραγματικές. Όμως στην εκφώνηση δεν αναφέρεται ότι οι λύσεις δεν πρέπει να είναι πραγματικές καθώς και οι πραγματικοί αριθμοί ανήκουν στο σύνολο C των μιγαδικών αριθμών. 2 εξισώσεις έχουν διπλή πραγματική ρίζα και 1 εξίσωση έχει δύο πραγματικές (διαφορετικές) ρίζες. Στο σύνολο 6 εξισώσεις. Οι ρίζες βγαίνουν εύκολα αν λύσουμε τις εξισώσεις.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vavlas
Εκκολαπτόμενο μέλος


Τότε θα την κάναμε λάθος στο σχολείο.Έλεγξε τις εξισώσεις μία-μία. Θα δεις ότι όλες ικανοποιούν την εκφώνηση. Η αναλυτική λύση είναι πολύ μακροσκελής για να την γράψω. 3 είναι οι εξισώσεις των οποίων λύσεις δεν είναι πραγματικές. Όμως στην εκφώνηση δεν αναφέρεται ότι οι λύσεις δεν πρέπει να είναι πραγματικές καθώς και οι πραγματικοί αριθμοί ανήκουν στο σύνολο C των μιγαδικών αριθμών. 2 εξισώσεις έχουν διπλή πραγματική ρίζα και 1 εξίσωση έχει δύο πραγματικές (διαφορετικές) ρίζες. Στο σύνολο 6 εξισώσεις. Οι ρίζες βγαίνουν εύκολα αν λύσουμε τις εξισώσεις.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dias
Επιφανές μέλος


Δεν είναι ακριβώς λάθος. Κάτι δεν μετέφερες σωστά.Τότε θα την κάναμε λάθος στο σχολείο.
Αν είναι r₁,r₂ ∈ℂ τότε οι εξισώσεις είναι 6, αφού ℛ⊆ ℂ.
Θα ήταν 3 οι εξισώσεις αν έλεγε: r₁,r₂ ∈(ℂ- ℛ).

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος


Αυτό ισχύει μόνο για τις 3 από τις 6 εξισώσεις των οποίων οι λύσεις δεν είναι πραγματικές.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vavlas
Εκκολαπτόμενο μέλος


Καθένας μου είπε διαφορετικά πράγματα.
Ο πρώτος μου είπε οτι παίρνουμε μόνο αρνητική διακρίνουσα,ο δεύτερος μου είπε χωρίζουμε περιπτώσεις,και ο τρίτος με αμφιβολία είπε νομίζω παίρνουμε μόνο αρνητική.
Επίσης ο πρώτος μου είπε οτι το (ℂ- ℛ) συμβολίζει τους φανταστικούς αριθμούς.
Δεν ξέρω πως το σκεφτήκατε εσείς,αλλά εγώ δοκίμασα να πάρω τύπους vieta που ισχύουν για όλες τις περιπτώσεις.Την συζήτησα σήμερα την άσκηση με 3 μαθηματικούς στο σχολείο.
Καθένας μου είπε διαφορετικά πράγματα.
Ο πρώτος μου είπε οτι παίρνουμε μόνο αρνητική διακρίνουσα,ο δεύτερος μου είπε χωρίζουμε περιπτώσεις,και ο τρίτος με αμφιβολία είπε νομίζω παίρνουμε μόνο αρνητική.
Επίσης ο πρώτος μου είπε οτι το (ℂ- ℛ) συμβολίζει τους φανταστικούς αριθμούς.
Από τους τύπους Vieta αν
Παίρνοντας μέτρα έχουμε
Επίσης
Παίρνοντας τις 10 περιπτώσεις που προκύπτουν κρατάμε τα ζεύγη
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dias
Επιφανές μέλος


Με όλο το θάρρος, να του πεις ότι είναι ΧΧΧΧΧΧΧ και να σκίσει το πτυχίο του. Δες το σχήμα:μου είπε οτι το (ℂ- ℛ) συμβολίζει τους φανταστικούς αριθμούς.

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vavlas
Εκκολαπτόμενο μέλος


Συμφωνώ μαζί σου.Με όλο το θάρρος, να του πεις ότι είναι ΧΧΧΧΧΧΧ και να σκίσει το πτυχίο του. Δες το σχήμα:
Το (ℂ- ℛ) περιέχει τους μιγαδικούς που δεν είναι πραγματικοί. Δηλαδή περιέχει και τους φανταστικούς (2i, -3i, κλπ), αλλά ΚΑΙ μιγαδικούς της μορφής x+yi με y ≠ 0 (π.χ. 2+5i, 3-2i, κλπ). Πες του να δει και το βιβλίο στη σελίδα 86. Ας μας πούνε και άλλοι εδώ στο φόρουμ φοιτητές και καθηγητές.![]()
Απλά μεταφέρω αυτά που μου είπε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος


Έστω
Υπόδειξη:
Κάτι με Bolzano παίζει αλλά το θέμα είναι πως βρίσκεις το διάστημα. Άντε και πολλά είπα

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vavlas
Εκκολαπτόμενο μέλος


Την βρήκα από το mathematica νομίζω.
Δίνεται στο C η εξίσωση:
α) Να βρείτε τις ρίζες
β) Να υπολογίσετε την τιμή της παράστασης: K =
γ) Να αποδείξετε ότι οι εικόνες στο μιγαδικό επίπεδο των μιγαδικών a =
b =
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
koum
Πολύ δραστήριο μέλος


Δείτε μια όμορφη.
Την βρήκα από το mathematica νομίζω.
Δίνεται στο C η εξίσωση:, όπου
η διακρίνουσά της, η οποία εξίσωση έχει ρίζες μιγαδικές και μη πραγματικές.
α) Να βρείτε τις ρίζεςτης παραπάνω εξίσωσης.
β) Να υπολογίσετε την τιμή της παράστασης: K =+
.
γ) Να αποδείξετε ότι οι εικόνες στο μιγαδικό επίπεδο των μιγαδικών a =και
b =είναι σημεία συμμετρικά ως προς την αρχή Ο των αξόνων.
Μια απάντηση στα γρήγορα για το α ερώτημα.
Ρίζες μη πραγματικές, οπότε
Τα επόμενα later...

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dias
Επιφανές μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vavlas
Εκκολαπτόμενο μέλος


Πάρτε ακόμα μία.
Έστω ότι το όριο
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dias
Επιφανές μέλος


Μπα. Μου φαίνεται πολύ απλό για να είναι αυτό που σκέφτομαι. Ας το γράψω, δεν πειράζει αν είναι λάθος (μεταξύ μας είμαστε). Λοιπόν:Έστω ότι το όριοδεν υπάρχει ενώ τα πλερικά όρια από δεξια και αριστερά υπάρχουν και είναι μη πεπερασμένα. Να δείξετε ότι υπάρχει το όριο
.
Τα πλευρικά όρια της f είναι +∞ το ένα και -∞ το άλλο, άρα τα πλευρικά όρια της 1/f είναι 0 και τα δύο, άρα...
Μάλλον δεν είναι αυτό, ε?

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος


Μια συμπαθητική που θυμάμαι:
Έστωσυνεχής και αύξουσα. Να δειχθεί οτι υπάρχει μοναδικό
τέτοιο ώστε
Υπόδειξη:
Κάτι με Bolzano παίζει αλλά το θέμα είναι πως βρίσκεις το διάστημα. Άντε και πολλά είπα![]()
Η συνάρτηση f είναι αύξουσα στο R, οπότε για κάθε x1, x2 στο R με x1<x2 ισχύει f(x1)<=f(x2).
Θεωρώ την συνάρτηση g(x)=f(x)+x. Η g είναι συνεχής στο R ως άθροισμα συνεχών στο R συναρτήσεων.
Για κάθε x1, x2 στο R με x1<x2 ισχύει f(x1)<=f(x2). Προσθέτοντας κατά μέλη τις 2 τελευταίες ανισότητες προκύπτει f(x1)+x1<f(x2)+x2 => g(x1)<g(x2).
Άρα για κάθε x1, x2 στο R με x1<x2 ισχύει g(x1)<g(x2). Επομένως η συνάρτηση g είναι γνησίως αύξουσα στο R και συνεπώς είναι 1-1.
Η f είναι συνεχής στο R. Συνεπώς σύμφωνα με το θεώρημα μέγιστης-ελάχιστης τιμής συνεχών συναρτήσεων, για κάθε x στο R υπάρχουν m, M στο R τέτοιοι ώστε m<=f(x)<=M για κάθε x στο R.
m<=f(x)<=M => m+x<=f(x)+x<=M+x => m+x<=g(x)<=M+x για κάθε x στο R.
lim(x->-άπειρο)(m+x)=lim(x->-άπειρο)(M+x)=-άπειρο
Σύμφωνα με το κριτήριο παρεμβολής είναι lim(x->-άπειρο)g(x)=-άπειρο.
Από τον ορισμό του ορίου προκύπτει ότι υπάρχει α<0 ώστε για κάθε x στο (-άπειρο, α) να υπάρχει m΄<0 τέτοιο ώστε g(x)<m΄ για κάθε x στο (-άπειρο, α). Επειδή g(x)<m΄ και m΄<0 τότε g(x)<0 για κάθε x στο (-άπειρο, α). Άρα υπάρχει χ1 στο (-άπειρο,α) τέτοιο ώστε g(x1)<0.
lim(x->+άπειρο)(m+x)=lim(x->+άπειρο)(M+x)=+άπειρο
Σύμφωνα με το κριτήριο παρεμβολής είναι lim(x->+άπειρο)g(x)=+άπειρο.
Από τον ορισμό του ορίου προκύπτει ότι υπάρχει β>0 ώστε για κάθε x στο (β, +άπειρο) να υπάρχει M΄>0 τέτοιο ώστε g(x)>M΄ για κάθε x στο (β, +άπειρο). Επειδή g(x)>M΄ και Μ΄>0 τότε g(x)>0 για κάθε x στο (β, +άπειρο). Άρα υπάρχει χ2 στο (β, +άπειρο) τέτοιο ώστε g(x2)>0.
Η συνάρτηση g είναι συνεχής στο [x1, x2] και ισχύει g(x1)g(x2)<0. Σύμφωνα με το θεώρημα Bolzano υπάρχει τουλάχιστον ένα x0 στο (x1, x2) τέτοιο ώστε g(x0)=0.
Επειδή η g είναι 1-1, τότε υπάρχει μοναδικό x0 τέτοιο ώστε g(x0)=0 => f(x0)=-x0
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vavlas
Εκκολαπτόμενο μέλος


Μπα. Μου φαίνεται πολύ απλό για να είναι αυτό που σκέφτομαι. Ας το γράψω, δεν πειράζει αν είναι λάθος (μεταξύ μας είμαστε). Λοιπόν:
Τα πλευρικά όρια της f είναι +∞ το ένα και -∞ το άλλο, άρα τα πλευρικά όρια της 1/f είναι 0 και τα δύο, άρα...
Μάλλον δεν είναι αυτό, ε?
![]()
Αυτό ακριβώς.
Ορίστε μια ακόμα.
Να βρείτε που κινούνται οι εικόνες τον μιγαδικών z για τους οποίους ισχύει.
Μην την υποτιμήσετε έχει κάτι έξυπνο στο τέλος.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
koum
Πολύ δραστήριο μέλος


Ορίστε μια ακόμα.
Να βρείτε που κινούνται οι εικόνες τον μιγαδικών z για τους οποίους ισχύει.
Μην την υποτιμήσετε έχει κάτι έξυπνο στο τέλος.
Έστω
Κύκλος
Δικιά μου άσκηση: Βρείτε το έξυπνο στην παραπάνω άσκηση!

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
tebelis13
Πολύ δραστήριο μέλος


Δικιά μου άσκηση: Βρείτε το έξυπνο στην παραπάνω άσκηση!
Άλυτη

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vavlas
Εκκολαπτόμενο μέλος


Αν δεν χρησιμοποιούσες τον ορισμό του μέτρο θα έπρεπε να κάνεις συμπλήρωση τετραγώνου.
Έστω,
Κύκλοςμε κέντρο
και ακτίνα
Δικιά μου άσκηση: Βρείτε το έξυπνο στην παραπάνω άσκηση!![]()
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
koum
Πολύ δραστήριο μέλος


Αν δεν χρησιμοποιούσες τον ορισμό του μέτρο θα έπρεπε να κάνεις συμπλήρωση τετραγώνου.
Την επόμενη φορά να ειδοποιείς πώς θες τη λύση.

Π.χ.
Διευκρίνηση: Να μην τη λύσετε με ύψωση στο τετράγωνο.

Προφανώς το μήνυμά μου είναι ειρωνικό. Cool

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vavlas
Εκκολαπτόμενο μέλος


Την επόμενη φορά να ειδοποιείς πώς θες τη λύση.
Π.χ.
Διευκρίνηση: Να μην τη λύσετε με ύψωση στο τετράγωνο.![]()
Δεν σου έκανα καμία παρατήρηση.
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 2 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 288 μέλη διάβασαν αυτό το θέμα:
- trifasikodiavasma
- ggl
- ioanna2007
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Dr. Gl. Luminous
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.