Ερώτημα Γ
Ξέροντας πλέον πως f(x)=lnx το χρησιμοποιώ και η g(x) γίνεται έτσι: g(x) = lnx * ln(e/x)
Από την περσινή άλγεβρα ξέρουμε πως ln(e/x) = lne - lnx, οπότε το χρησιμοποιώ: g(x) = lnx * [lne - lnx]
Ξέρουμε πως lne = 1: g(x) = lnx * [1 - lnx]
Ας παραγωγίσουμε τώρα την g: g'(x) = [lnx - (lnx)^2] ' = 1/x - 2lnx * (lnx) ' = 1/x - 2lnx * 1/x = (1 -2lnx)/x
Το πρόσημο της παραγώγου εξαρτάται από τον αριθμητή αφού ο παρονομαστής είναι το χ. Αφού δουλέυουμε στο (0,+οο) το χ θετικό άρα ας εξετάσουμε τον αριθμητή!
Ορίζω τον αριθμητή ως μία συνάρτηση: h(x) = 1 - 2lnx
Ας παραγωγίσουμε την h: h'(x) = 0 - 2*1/x = -2/x <0 αφού δουλεύουμε στο (0,+οο) όπου το χ θετικό!
Άρα η h είναι φθίνουσα στο (0,+οο)
Παρατηρώ πως η h έχει προφανης ρίζα το e^(1/2) [Τ_Ρ(e)] που θα είναι μοναδική αφού η h είναι φθίνουσα!Επομένως αυτή είναι και η μοναδική ρίζα της g'
Άρα στο (0,e^(1/2)) η g' είναι θετική και στο (e^(1/2),+οο) αρνητική!
Από πάνω συνεπάγεται πως η g είναι αύξουσα στο (0,e^(1/2)) και φθίνουσα στο (e^(1/2),+οο)!
Άρα έχουμε μέγιστο και μάλιστα ολικό στο σημείο K(e^(1/2), g(e^(1/2))!
g(e^(1/2)= 1/2*(1-1/2)= 1/4
Αρα Κ(e^(1/2),1/4) Ολικο μέσγιστο
Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.