Παρά το γεγονός οτι η φυσική του λυκείου περιλαμβάνει κυκλώματα, δυστυχώς δεν υπάρχει ο απαιτούμενος χρόνος για την εις βάθος μελέτη τους. Δυστυχώς αυτό έχει ως αποτέλεσμα πολλοί μαθητές να θεωρούν οτι η επιστήμη των κυκλωμάτων περιορίζεται σε ανιαρά προβλήματα που περιλαμβάνουν μόνο αντιστάσεις και υπολογισμούς ρευμάτων και τάσεων χωρίς να υπάρχει κάποια χρήσιμη λειτουργία ή να διαφαίνεται κάποιο ιδιαίτερο νόημα.
Φυσικά αυτό είναι μια στρεβλή και εξαιρετικά λανθασμένη εικόνα της πραγματικότητας καθώς η ηλεκτρονική είναι απο τις πιο νεαρές επιστήμες, που ωστόσο είχε -και έχει- τεράστια επίδραση στην ζωή των ανθρώπων. Σήμερα εταιρίες έχουν φτάσει σε αξία τρισεκατομμυρίων δολλαρίων εξαιτίας της ικανότητας τους να κατασκευάζουν καλά κυκλώματα. Ίσως οι βασικοί φυσικοί νόμοι που τα διέπουν να είναι γνωστοί, αλλά αυτό δεν σημαίνει οτι η τέχνη της δημιουργίας κυκλωμάτων με καλύτερες ιδιότητες έχει κλείσει σαν κεφάλαιο. Κάθε άλλο μάλιστα, συνεχώς οι επιλογές και οι δυνατότητες αυξάνονται, όρεξη και φαντασία να έχει κανείς χρειάζεται μόνο! Είναι εντυπωσιακό λοιπόν το πως φτάσαμε σε τόσο σύντομο χρονικό διάστημα απο τον έλεγχο των ηλεκτρονίων, στο να αυτοματοποιούμε τους υπολογισμούς, κατασκευάζοντας ηλεκτρονικούς υπολογιστές(να'ναι καλά ο Turing),και στο να μιλάμε για πολύπλοκα μοντέλα τεχνητής νοημοσύνης σήμερα που κάνουν όλα αυτά τα θαυμαστά πράγματα. Για την ακρίβεια απο τις πιο σημαντικές, εαν όχι η σημαντικότερη εφεύρεση σε ολόκληρη την ανθρώπινη ιστορία πιθανότατα να ήταν αυτή του τρανζίστορ. Είναι σίγουρα η πιο επιτυχημένη συσκευή που δημιουργήθηκε ποτέ, η οποία κατέστησε τον υπολογισμό και τις επικοινωνίες μεταξύ των ανθρώπων εφικτές.
Τι είναι στην ουσία αυτό το φαινομενικά αθώο τερατάκι όμως ; Σκεφτείτε το σαν έναν σωλήνα νερού ο οποίος ελέγχεται απο μια βαλβίδα. Επιτρέποντας την διέλευση μιας μεγάλης ποσότητας νερού στο σωλήνα είναι δυνατόν με μικρές μεταβολές της βαλβίδας να δημιουργηθούν μεγάλες αυξομειώσεις στην ποσότητα του νερού που ρέει στον σωλήνα. Έτσι πετυχαίνουμε ενίσχυση ! Ακριβώς το ίδιο κάνει και το διπολικό τρανζίστορ επαφής : Μέσω της εφαρμογής μιας τάσεως μεταξύ δύο ακροδεκτών, της βάσης(Β) και του εκπομπού(Ε), είναι σε θέση να προκαλέσει μεταβολές στο μεγάλο ρεύμα που ρέει μεταξύ του συλλέκτη και του εκπομπού. Αυτές οι μεταβολές ρεύματος, μέσω μιας αντίστασης Rc στον συλλέκτη(C), μετατρέπονται σε μεταβολές τάσης. Όπως στην περίπτωση του σωλήνα με το νερό, μεγαλύτερη ροή νερού σημαίνει πως οι ίδιες μεταβολές της βαλβίδας δημιουργούν μεγαλύτερες αυξομειώσεις στην ροή του νερού, έτσι συμβαίνει και στο τρανζίστορ. Οπότε μια παράμετρος gm που ονομάζεται διαγωγιμότητα, και εξαρτάται άμεσα απο την ροή ρεύματος στον συλλέκτη, επηρεάζει την ενίσχυση. Όσο μεγαλύτερο το ρεύμα στον συλλέκτη, άρα και το gm, τόσο μεγαλύτερη η ενίσχυση λοιπόν ! Δυστυχώς όμως, όπως είπαμε είναι ένα φαιμονενικά αθώο στοιχείο, το οποίο είναι τερατάκι καταβάθος... γιατί όσο αυξάνει το ρεύμα στον συλλέκτη του, τόσο τείνει να αλλάξει την συμπεριφορά του, και να μην λειτουργεί πλέον σαν σωλήνας νερού ελεγχόμενος απο μια βαλβίδα. Για να ισχύει η αναλογία, πρέπει να υπάρξει κατάλληλο κύκλωμα πόλωσης που θα το εξαναγκάσει να συμπεριφέρεται με αυτόν τον τρόπο ικανοποιώντας συγκεκριμένες συνθήκες τάσεων μεταξύ των ακροδεκτών του.
Ας δούμε και το απλούστερο προβλήματα εφαρμογής που θα μπορούσε να σκεφτεί κανείς :
Πρόβλημα :
Να σχεδιαστεί ένας απλός ενισχυτής τοπολογίας κοινού εκπομπού, που θα παρέχει κέρδος τάσης Av = 20, και θα έχει αντίσταση εισόδου Rin = 1ΚΩ. Η τάση τροφοδοσίας είναι Vcc = 1.8V ενώ το τρανζίστορ είναι npn και χαρακτηρίζεται απο β = 100, και ανάστροφο ρεύμα κορεσμού Is = 5*10^(-17)A. Επιβεβαιώστε επίσης οτι το τρανζίστορ λειτουργεί πράγματι στην ενεργό περιοχή. Ποιο είναι το μέγιστο κέρδος τάσης που μπορεί να επιτευχθεί ; Τι θα συμβεί εαν η πόλωση υλοποιηθεί με διαιρέτη τάσης ;
Θεωρήστε την θερμική τάση Vτ = 26mV.
View attachment 135907
Λύση :
Για αντίσταση εισόδου θέλουμε ρεύμα συλλέκτη :
Rin = rπ = β/gm = βVτ/Ic =>
Ic/βVτ = 1/Rin =>
Ic = βVτ/Rin =>
Ic = 100*26mV/1ΚΩ =>
Ic = 2.6mA
Το φορτίο στον συλλέκτη πρέπει να είναι για να επιτευχθεί κέρδος Av = 20 :
|Av| = gmRc =>
Rc = |Av|/gm =>
Rc = VτAv/Ic =>
Rc = 26mV*20/2.6mA =>
Rc = 200Ω
Η τάση της επαφής βάση-εκπομπού θα είναι :
Vbe = Vτ*ln(Ic/Is) =>
Vbe = 0.821V
Η τάση στον συλλέκτη θα είναι :
Vc = Vcc - IcRc =>
Vc = 1.8V - 2.6mA*200Ω =>
Vc = 1.28V
Επομένως η τάση συλλέκτη-βάσης είναι :
Vcb = Vc - Vb =>
Vcb = Vc - Vbe =>
Vcb = 1.28V - 0.821V =>
Vcb = 0.459V > 0
Διαπιστώνουμε οτι το τρανζίστορ είναι πράγματι στην ενεργό περιοχή λοιπόν αφού η επαφή B-C είναι ανάστροφα πολωμένη.
Το μέγιστο κέρδος που μπορεί να επιτευχθεί θα είναι :
Av <= (Vcc - Vbe)/Vτ =>
Av <= (1.8V - 0.821V)/0.026V =>
Av <= 37.65
Για το δίκτυο πόλωσης θεωρούμε έναν διαιρέτη τάσης, για την απεξάρτηση της τάσης της επαφής vbe απο το β.
Σε αυτή την περίπτωση το ρεύμα στην βάση θα είναι :
Ib = Ic/β = 26 μΑ
Άρα θέλουμε :
Vcc/(R1+R2) >= 10Ib , έτσι ώστε να υπάρχει μικρή απόκλιση απο την θεώρηση του διαιρέτη τάσης
&
Vcc*R2/(R1+R2) = Vbe , έτσι ώστε να δημιουργούμε την κατάλληλη τάση στην επαφή Vbe.
Δηλαδή :
R1 + R2 <= 1.8V/(10*26μA) =>
R1 + R2 <= 6.92ΚΩ
Άρα εαν επιλέξουμε R2 = 3KΩ, τότε :
R1 = VccR2/Vbe - R1 =>
R1 = 1.8V*3ΚΩ/0.821V - 3ΚΩ =>
R1 = 3.58ΚΩ
Είναι ξεκάθαρο οτι ικανοποιούν τον αρχικό περιορισμό αλλά η αντίσταση εισόδου τώρα έχει μειωθεί αφού :
Rin = rπ||R1||R2 = 0.62ΚΩ