Demlogic
Πολύ δραστήριο μέλος
Το δεύτερο ερώτημα είναι που δε μου βγαίνει.Ευχαριστώ πάντως.
υ.γ. σου ξέφυγε ένα i
ποτέ δεν μου ξεφεύγει τίποτα. Σωστό είναι. Για ξαναδές.
το 2ο ερώτημα είναι πολύ εύκολο, σε αφήνω να το σκεφτείς μόνος σου. Δες το γεωμετρικό της υπόθεσης
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
άρα υπάρχει x0 κοντά στο 0+ τέτοιο ώστε
κι επειδή η είναι γνησίως αύξουσα, το (ξ) είναι μοναδικό.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
tipotas
Εκκολαπτόμενο μέλος
Στο δεύτερο ερώτημα το πρόβλημα μου είναι ότι βρίσκω τον μιγαδικό z=1/2 - i/2 αλλά πως ξέρω ότι ανήκει στον γεωμετρικό τόπο των μιγαδικών z2;(αφού εμείς βρήκαμε που κινείται ο z2 και όχι τον γεωμετρικό τόπο του)
και άμα αντικαταστήσω στην σχέση z1z2=1+i μου βγαίνει ότι z1=2i δηλαδή ότι το σημείο Α(0,2) είναι εικόνα του z1 πράγμα που δεν ξερουμε αν ισχύει αφού δε γνωρίζουμε ούτε τον γεωμετρικό τόπο των μιγαδικών z1.
Αν μπορείς να μου το εξηγήσεις...
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
εννοώ ότι η σχέση είναι z1z2=1+i και όχι z1z2=1
Στο δεύτερο ερώτημα το πρόβλημα μου είναι ότι βρίσκω τον μιγαδικό z=1/2 - i/2 αλλά πως ξέρω ότι ανήκει στον γεωμετρικό τόπο των μιγαδικών z2;(αφού εμείς βρήκαμε που κινείται ο z2 και όχι τον γεωμετρικό τόπο του)
και άμα αντικαταστήσω στην σχέση z1z2=1+i μου βγαίνει ότι z1=2i δηλαδή ότι το σημείο Α(0,2) είναι εικόνα του z1 πράγμα που δεν ξερουμε αν ισχύει αφού δε γνωρίζουμε ούτε τον γεωμετρικό τόπο των μιγαδικών z1.
Αν μπορείς να μου το εξηγήσεις...
το οτι εχεις βρει τον γεωμετρικό τόπο του z2 σημαίνει οτι εχεις μια σχέση με τον μιγαδικό αυτό. Δεν θα πας στην αρχική πάλι. Οπότε κοιτάς μήπως επιβεβαιώνει την σχέση αυτή που ανακάλυψες στο α ερώτημα. Αν την επιβεβαιώνει σημαίνει οτι αυτός ο μιγαδικός είναι όντως πάνω στον γεωμετρικό τόπο του z2, όμως αυτό δε σημαίνει οτι είναι αυτός με το ελάχιστο μέτρο.
Απλά φέρνεις την κάθετη που ξεκινάει απο το (0,0), στην ευθεία που αποτελεί γεωμετρικό τόπο του z2, και το σημείο τομής θα είναι εκει που είναι η εικόνα του μιγαδικού με το ελάχιστο μέρος.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
aris-bas
Νεοφερμένος
Νομιζω εφαρμοζεις θεωρημα Rolle στο [limf(x){x->0+},1] για την f(x) και αποδεικνυεις οτι υπαρχει τουλαχιστον ενα ξ ε(0,1) τετοιο ωστε f'(ξ)=0 και αποδεικνυεις οτι η f '(x) ειναι (1-1) ή γνησιως μονοτονη
στο (0,1)
Για την 1η ασκηση :
Θεωρω την g(x)=f(x)-x²-ημx ,xE[-π,π]
Kανε rolle για την g στα [-π,0] και [π,0]
Eπειτα κανε Rolle για την g' στο [ξ1,ξ2] (ξ1 η ριζα της g apo to (-π,0) και ξ2 η ριζα απο το (π,0) ) .
σας ευχαριστω πολυ ολους για τη βοηθεια σας!!!
άρα υπάρχει x0 κοντά στο 0+ τέτοιο ώστε
κι επειδή η είναι γνησίως αύξουσα, το (ξ) είναι μοναδικό.
καμια ιδεα για την παρακατω????
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Filippos14
Εκκολαπτόμενο μέλος
Πεζει να ειναι και λαθος η λυση μου.Παρακαλω οποιος ξερει ας μας πει.σας ευχαριστω πολυ ολους για τη βοηθεια σας!!!
καμια ιδεα για την παρακατω????
View attachment 55841
Λοιπον:
Η f ειναι συνεχης στο [0,2] αρα απο θεωρημα μεγιστης και ελαχιστης τιμης παιρνει μια ελαχιστη τιμη m και μια μεγιστη τιμη M.
Ειναι m=0 και M=4.
Για καθε x sto [0,2] ειναι : m <= 2x <= Μ (ΜΙΚΡΟΤΕΡΟ-ΙΣΟ) . Επειδη f συνεχης στο [0,2] υπαρχει ενα χ0 στο [0,2] ωστε f(X0)=2x0.
Για την μοναδικοτητα δεν σκευτικα κατι ακομα
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
tipotas
Εκκολαπτόμενο μέλος
το οτι εχεις βρει τον γεωμετρικό τόπο του z2 σημαίνει οτι εχεις μια σχέση με τον μιγαδικό αυτό. Δεν θα πας στην αρχική πάλι. Οπότε κοιτάς μήπως επιβεβαιώνει την σχέση αυτή που ανακάλυψες στο α ερώτημα. Αν την επιβεβαιώνει σημαίνει οτι αυτός ο μιγαδικός είναι όντως πάνω στον γεωμετρικό τόπο του z2, όμως αυτό δε σημαίνει οτι είναι αυτός με το ελάχιστο μέτρο.
Απλά φέρνεις την κάθετη που ξεκινάει απο το (0,0), στην ευθεία που αποτελεί γεωμετρικό τόπο του z2, και το σημείο τομής θα είναι εκει που είναι η εικόνα του μιγαδικού με το ελάχιστο μέρος.
το σημείο τομής των δύο ευθειών είναι ο μιγαδικός z=1/2 - i/2 που είπα.Τον γεωμετρικό τόπο των μιγαδικών z2 όμως δεν το έχουμε βρει, έχουμε βρει απλως που κινείται...
Θεωρούμε τη συνάρτηση g(x)=f(x)-2xσας ευχαριστω πολυ ολους για τη βοηθεια σας!!!
καμια ιδεα για την παρακατω????
View attachment 55841
g(0)=f(0)>=0
g(2)=f(2)-4<=0( αφού η f παίρνει τιμές από το [0,4])
Άρα:
-Η g είναι συνεχής στο [0,2]
-g(0)g(2)<=0
Οπότε
-αν g(0)g(2)<0 τοτε σύμφωνα με το θεώρημα Bolzano υπάρχει x0e(0,2) τέτοιο ώστε g(x0)=0
-αν g(0)g(2)=0 τότε g(0)=0 ή g(2)=0
Τελικά υπάρχει x0e[0,2] τέτοιο ώστε g(x0)=0 <=> f(x0)=2x0
Θα δείξουμε τώρα ότι αυτό είναι μοναδικό: Αν η g έχει κι άλλη ρίζα τότε εφαρμόζοντας Rolle προκύπτει ότι υπάρχει ξ τέτοιο ώστε g'(ξ)=0<=>f'(ξ)=2 άτοπο
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
tipotas
Εκκολαπτόμενο μέλος
Πεζει να ειναι και λαθος η λυση μου.Παρακαλω οποιος ξερει ας μας πει.
Λοιπον:
Η f ειναι συνεχης στο [0,2] αρα απο θεωρημα μεγιστης και ελαχιστης τιμης παιρνει μια ελαχιστη τιμη m και μια μεγιστη τιμη M.
Ειναι m=0 και M=4.
Για καθε x sto [0,2] ειναι : m <= 2x <= Μ (ΜΙΚΡΟΤΕΡΟ-ΙΣΟ) . Επειδη f συνεχης στο [0,2] υπαρχει ενα χ0 στο [0,2] ωστε f(X0)=2x0.
Για την μοναδικοτητα δεν σκευτικα κατι ακομα
η f παίρνει τιμές από το [0,4] αλλά δεν ξέρουμε αν παίρνει τις τιμές 0 και 4, οπότε δεν μπορείς να πεις ότι m=0 και M=4
Ακόμα όμως και να ισχυουσε αυτό τότε για κάθε x sto [0,2] ειναι : m <= 2x <= Μ οπότε υπάρχει ξ στο [0,2] τέτοιο ώστε f(ξ)=2x και όχι απαραίτητα ξ=x
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Filippos14
Εκκολαπτόμενο μέλος
η f παίρνει τιμές από το [0,4] αλλά δεν ξέρουμε αν παίρνει τις τιμές 0 και 4, οπότε δεν μπορείς να πεις ότι m=0 και M=4
Ακόμα όμως και να ισχυουσε αυτό τότε για κάθε x sto [0,2] ειναι : m <= 2x <= Μ οπότε υπάρχει ξ στο [0,2] τέτοιο ώστε f(ξ)=2x και όχι απαραίτητα ξ=x
Οπ ναι δικιο εχεισ για το 2ο.Για το 1ο νομιζα οτι το [0,4] ηταν το συνολο τιμων της f,διαβασα απροσεκτα
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
3g²(x)g'(x)+2g(x)g'(x)+g'(x) = ...
g'(x) ( 3g²(χ)+2g(x)+1) = ...
το πρόσιμο της παράστασης 3g²(χ)+2g(x)+1) ειναι πάντα θετικό, άρα η g'(x) θα έχει το πρόσιμο του (x²/2 lnx-3/4 x²+x)'
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Marina-lalala
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
f(x)=ημ(συνχ)+συν(ημχ)-χ να έχει μια τουλάχιστον ριζά στο (0,π/2)
f(0) = ημ ( 1 ) + συν ( 0 ) = ημ1 >0 (1ο τεταρτημόριο)
f(π/2) ημ ( 0 ) + συν ( 1 ) - π/2 = συν(1) - π/2 <0 , αφου π/2>1>συνx για καθε x,
άρα ο βουλζάνος σε παίρνει απο το χεράκι
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
methexys
Τιμώμενο Μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Μάγδα Μάγδα
Νεοφερμένος
Ν.δ.ο υπάρχει τουλάχιστον ενα ξ που να ανήκει στο (1,3) έτσι ώστε f'' (ξ)=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
methexys
Τιμώμενο Μέλος
f:R->R δύο φορές παραγωγίσιμη με f(1)=a+2b , f(2)=2a+3b, f(3)=3a+4b a,bεR
Ν.δ.ο υπάρχει τουλάχιστον ενα ξ που να ανήκει στο (1,3) έτσι ώστε f'' (ξ)=0
Δοκίμασε ΘΜΤ στο (1,2) και στο (2,3), ένα Rolle σ'αυτό που θα βρεις και λύθηκε
Σημείωση: Το μήνυμα αυτό γράφτηκε 10 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 27 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 224 μέλη διάβασαν αυτό το θέμα:
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.