2) Εστω η συνάρτηση φ(χ)= 2^χ +3^χ -1, χεR. Να βρειτε το πλήθος των ριζων της εξίσωσης φ(χ)=α^2 +α -3, για τις διάφορες τιμές του αεR
Θεωρούμε την συνάρτηση f(x)=(x^2)+x-3, x ανήκει R. Η f είναι συνεχής και παραγωγίσιμη στο R με πρώτη παράγωγο f΄(x)=2x+1.
Ισχύει f΄(-1/2)=0 και f΄(x)<0 για x ανήκει (-oo,-1/2), f΄(x)>0 για x ανήκει (-1/2,+oo).
Η f είναι συνεχής στο (-οο,-1/2], παραγωγίσιμη στο (-οο,-1/2) και ισχύει f΄(x)<0 για κάθε x στο (-οο,-1/2). Άρα η f είναι γνησίως φθίνουσα στο (-οο,-1/2]. Η f είναι συνεχής στο [-1/2,+οο), παραγωγίσιμη στο (-1/2,+οο) και ισχύει f΄(x)>0 για κάθε x στο (-1/2,+οο). Άρα η f είναι γνησίως αύξουσα στο [-1/2,+οο). Επομένως η f παρουσιάζει ολικό ελάχιστο στο x0=-1/2 με τιμή f(-1/2)=-7/4.
lim(x->-oo)f(x)=lim(x->-oo)((x^2)+x-3)=lim(x->-oo)(x^2)=+oo
lim(x->+oo)f(x)=lim(x->+oo)((x^2)+x-3)=lim(x->+oo)(x^2)=+oo
Η f είναι συνεχής και γνησίως φθίνουσα στο (-οο,-1/2], οπότε:
f((-oo,-1/2])=[f(-1/2),lim(x->-oo)f(x))=[-7/4,+oo)
f([-1/2,+oo))=[f(-1/2),lim(x->+oo)f(x))=[-7/4,+oo)
Έχουμε f(-2)=-1 και επειδή η f είναι γνησίως φθίνουσα στο (-οο,-1/2] δεν υπάρχει άλλο x1<=-1/2 τέτοιο ώστε f(x1)=-1
Έχουμε f(1)=-1 και επειδή η f είναι γνησίως αύξουσα στο [-1/2,+οο) δεν υπάρχει άλλο x2>=-1/2 τέτοιο ώστε f(x2)=-1
Άρα η εξίσωση f(x)=-1 έχει ακριβώς 2 πραγματικές ρίζες, τις x1=-2 και x2=1. (Μπορούμε να τις βρούμε αναλυτικά αν λύσουμε την δευτεροβάθμια εξίσωση (x^2)+x-3=-1 <=> (x^2)+x-2=0)
Λαμβάνοντας υπόψη τη μονοτονία της f έχουμε:
x<-2 <=> f(x)>f(-2) <=> f(x)>-1
-2<x<-1/2 <=> f(-1/2)<f(x)<f(-2) <=> -7/4<f(x)<-1
-1/2<x<1 <=> f(-1/2)<f(x)<f(1) <=> -7/4<f(x)<-1
x>1 => f(x)>f(1) => f(x)>-1
Επομένως για x ανήκει (-oo,-2)U(1,+oo) ισχύει f(x)>-1 και για x ανήκει [-2,1] ισχύει -7/4<=f(x)<=-1
Η συνάρτηση φ είναι συνεχής και παραγωγίσιμη στο R με πρώτη παράγωγο φ΄(x)=(2^x)ln2+(3^x)ln3>0 για κάθε x ανήκει R
Η φ είναι συνεχής και παραγωγίσιμη στο R και ισχύει φ΄(x)>0 για κάθε x ανήκει R. Επομένως η φ είναι γνησίως αύξουσα στο R και συνεπώς και 1-1.
Επειδή lim(x->+oo)(2^x)=lim(x->+oo)(3^x)=+oo τότε lim(x->+oo)φ(x)=+oo
Επειδή lim(x->-oo)(2^x)=lim(x->-oo)(3^x)=0 τότε lim(x->-oo)φ(x)=-1
Η φ είναι συνεχής και γνησίως αύξουσα στο R, οπότε
φ(R)=φ((-οο,+οο))=(lim(x->-oo)φ(x),lim(x->+oo)φ(x))=(-1,+oo)
Άρα ισχύει φ(x)>-1 για κάθε x ανήκει R
Αν α ανήκει [-2,1] τότε ισχύει -7/4<=f(α)<=-1 και η εξίσωση φ(x)=f(α) είναι αδύνατη αφού ισχύει φ(x)>-1 για κάθε x ανήκει R
Αν α ανήκει (-οο,-2)U(1,+οο) τότε ισχύει f(α)>-1 και επειδή η φ είναι συνεχής και ισχύει φ(x)>-1 για κάθε x ανήκει R τότε η εξίσωση φ(x)=f(α) έχει λύση και επειδή η φ είναι 1-1 τότε έχει μοναδική πραγματική λύση.
Συνοψίζοντας για κάθε α ανήκει (-οο,-2)U(1,+oo) υπάρχει μοναδικό x ανήκει R τέτοιο ώστε φ(x)=f(α), ενώ για κάθε α ανήκει [-2,1] και για κάθε x ανήκει R ισχύει φ(x)>f(α).