k0ralis
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Θεωρούμε την συνάρτηση και παρατηρούμε ότι . Έχουμε επίσης1)θεωρουμε τη συναρτηση f(x)=5(x^4)+3α(x^2)+B , οπου α.β ε R και α+β=-1.Ν.Δ.Ο εχει μαι τουλαχιστον λυση στο (0,1),η εξισωση f(x)=0
και από υπόθεση. Από θεώρημα Rolle θα υπάρχει τουλάχιστον ένα
i) Θεωρούμε την συνάρτηση η οποία είναι συνεχής στο και παραγωγίσιμη στο με . Iσχύουν λοιπόν οι προϋποθέσεις του θεωρήματος Rolle και άρα υπάρχει2)Eστω η συναρτηση f δυο φορες παραγωγισιμη στο [α,β] με f''(x) διαφορο του 0 για καθε χ ε (α,β).Αν 0<α<β και f(α)=f(β)=0 ν.δ.ο :
ι)υπαρχει χε (α,β) τετοιος ωστε να ισχυει χο f'(xo)-f(xo)=0
ii)η εφαπτομενη της γραφικης παραστασης της f στο σημειο Μ (χο,f(xo)),διερχεται απο την αρχη των αξονων.
ii) Η εφαπτομένη στο έχει εξίσωση
Η ευθεία διέρχεται από την αρχή των αξόνων αφού από προηγούμενο υποερώτημα.
(το δεδομένο δεν βλέπω που χρειάζεται)
μήπως είναι αντί ;4)Αν η συναρτηση f εχει πρωτη και δευτερη παραγωγο στο [α,β] και f(α)=α, f(β)=β και υπαρχει γ ε (α,β) με f(γ)=γ, να δειξετε οτι υπαρχει ξ ε (α,β) ωστε f'(ξ)=0.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος
Ωχ ναι!ειναι f ''(ξ)=0 χιλια συγνωμη!!
καμια ιδεα για την 4 ή την 5... ??????
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Επειδή για και η είναι παραγωγίσιμη-άρα και συνεχής-θα διατηρεί πρόσημο στο . Έτσι είτε για κάθε οπότε η είναι γνησίως φθίνουσα στο και άρα για είτε3)εστω η συναρτηση f δυο φορες παραγωγισιμη στο [α,β] και ισχυουν : f'(α)=f(β)=0 f'(x) διαφορο του 0 , για καθε α<χ<β.Να αποδειξετε οτι υπαρχει ενας τουλαχιστον ξ ε (α,β) τετοιος ωστε να ειναι:
f''(ξ)/f'(ξ) + f'(ξ)/f(ξ) =0
για κάθε οπότε η είναι γνησίως αύξουσα στο και άρα για .
Έτσι σε κάθε περίπτωση για
H σκέψη είναι να ορίσουμε κατάλληλη συνάρτηση έτσι ώστε η σχέση
να γραφεί στην μορφή . Έτσι θα ξέρουμε σε ποια συνάρτηση θα εφαρμόσουμε το θεώρημα Rolle. Για να βρούμε αυτή την συνάρτηση δοκιμάζουμε τα εξής:
.
Η τελευταία σχέση θυμίζει παράγωγο γινομένου και πιο συγκεκριμένα την παράγωγο της συνάρτησης (φυσικά όλα αυτά γράφονται στο πρόχειρο).
Για την τελευταία προφανώς ισχύουν οι προϋποθέσεις του θεωρήματος Rolle στο άρα υπάρχει τουλάχιστον ένα τέτοιο ώστε όπως θέλαμε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος
Επειδή για και η είναι παραγωγίσιμη-άρα και συνεχής-θα διατηρεί πρόσημο στο . Έτσι είτε για κάθε οπότε η είναι γνησίως φθίνουσα στο και άρα για είτε
για κάθε οπότε η είναι γνησίως αύξουσα στο και άρα για .
Έτσι σε κάθε περίπτωση για
H σκέψη είναι να ορίσουμε κατάλληλη συνάρτηση έτσι ώστε η σχέση
να γραφεί στην μορφή . Έτσι θα ξέρουμε σε ποια συνάρτηση θα εφαρμόσουμε το θεώρημα Rolle. Για να βρούμε αυτή την συνάρτηση δοκιμάζουμε τα εξής:
.
Η τελευταία σχέση θυμίζει παράγωγο γινομένου και πιο συγκεκριμένα την παράγωγο της συνάρτησης (φυσικά όλα αυτά γράφονται στο πρόχειρο).
Για την τελευταία προφανώς ισχύουν οι προϋποθέσεις του θεωρήματος Rolle στο άρα υπάρχει τουλάχιστον ένα τέτοιο ώστε όπως θέλαμε.
ωραια...καταλαβα τον τροπο της ασκησης...σ ευχαριστω πολυ !!!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
Ψάχνω ύπαρξη ρίζας για την και στην εκφώνηση τα δεδομένα μεταφράζονται σε όπου . Παρατηρώ ότι και . Έτσι αποδεικνύοντας την ύπαρξη ρίζας για την στο διάστημα έχω πετύχει να αποδείξω ότι υπάρχει ρίζα στο ίδιο διάστημα για την .4)Αν η συναρτηση f εχει πρωτη και δευτερη παραγωγο στο [α,β] και f(α)=α, f(β)=β και υπαρχει γ ε (α,β) με f(γ)=γ, να δειξετε οτι υπαρχει ξ ε (α,β) ωστε f''(ξ)=0.
Τώρα για να δείξω ότι υπάρχει ρίζα της σκέφτομαι θεώρημα Rolle για την . Για να γίνει αυτό όμως χρειάζομαι δύο σημεία διαφορετικά μεταξύ τους τέτοια ώστε .
Έχω όμως από τα δεδομένα με οπότε μπορώ να εφαρμόσω και πάλι θεώρημα Rolle για την στα διαστήματα και απ' όπου θα προκύψουν τα που ζητούσα με . Μάλιστα τα είναι διαφορετικά μεταξύ τους αφού και .
Τα παραπάνω ήταν απλά η πορεία της σκέψης ή οποία ήταν ανάποδη (ξεκίνησα από την g'' και έφτασα στην g). Η γραφή της λύσης ας γίνει ανάποδα. Δηλαδή πρώτα εφαρμόζω Rolle για την στα διαστήματα και απ' όπου προκύπτουν και με και και μετά εφαρμόζω Rolle για την στο απ' όπου διαπιστώνω ότι υπάρχει με και άρα
i) Προφανές5)εστω μια συναρτηση f , συνεχης στο [α,β] με παραγωγισιμη στο (α,β) με f(α)=f(β)=0 και c[α,β].Να δειξετε οτι :
ι)για την g(x)=f(x)/x-c, οπου c [α,β] εφαρμοζεται το θεωρημα Rolle στο [α,β].
ιι)Αν c [α,β], τοτε co ε (α,Β) τετοιο ωστε η εφαπτομενη της Cf στο (co,f(co)) να διερχεται απο το (c,0)
ii) Η εφαπτομένη στο τυχαίο σημείο όπου έχει την εξίσωση . Για να διέρχεται από το πρέπει οι συντεταγμένες του να την επαληθεύουν, δηλαδή
Λόγω του θεωρήματος Rolle στο διάστημα για την συνάρτηση
του πρώτου ερωτήματος υπάρχει πράγματι
όπως θέλαμε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rebel
Πολύ δραστήριο μέλος
αφού και λόγω των ιδιοτήτων
και
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
1. Αν η συνάρτηση f είναι συνεχής στο 1 και να αποδείξετε ότι
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
akis95
Δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος
προσθεσε και αφαιρεσε το 1 το οποιο ειναι το f(1)
Ευχαριστώ!
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Demlogic
Πολύ δραστήριο μέλος
προσεξε το γιατι αυτες οι ασκησεις ειναι πολυ ευκολες...θα επρεπε να τις λυνεις με ανεσηΕυχαριστώ!
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
antwwwnis
Διάσημο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος
1) εστω f,g συναρτησεις ορισμενες σρο R και παραγωγισιμες στο σημειο xο=0 αν ειναι f(0)=g(0) και f(x)+x>=g(x) για καθε χεR ν.δ.ο g'(0)-f'(0)=1
2)η συναρτηση f:R-->R ειναι συνεχης στο σημειο xοεR ν.δ.ο η συναρτηση g(x)=|x-xo|f(x)
ειναι παραγωγισιμη στο xo αν και μονο αν f(xo)=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
*Serena*
Τιμώμενο Μέλος
Εχω τη σχέση f(f(x))= f(x) +5x
Εχω δείξει ότι αντιστρέφεται, ότι δεν είναι γνησίως φθίνουσα, και ότι f(o)=o
Και μετά μου λέει να λύσω την εξίσωση:
f(f(2x)) +e^x-2 = f(2x) +3 - 11x
Πως λύνεται αυτό το πράγμα?
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Ντίνα951
Νεοφερμένος
προς 2χ2 -5χ+3
η λύση του κάμει -1/2
μπορεί καποιος να με βοηθήσει??
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
antwwwnis
Διάσημο μέλος
lim x τείνει στο 1- Ρίζα χ2 +3 -2-->εκτος ριζας
προς 2χ2 -5χ+3
η λύση του κάμει -1/2
μπορεί καποιος να με βοηθήσει??
Πολ/ζεις και διαιρείς με τη συζυγη παρασταση του αριθμητη.
Όσα τριωνυμα εμφανιστούν, τα παραγοντοποιείς. Απλοποιείς το χ-1 και η αοριστία έχει αρθεί.
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Ντίνα951
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος
καμια απαντηση?καλημερα εχω δυο ασκησεις που δεν ξερω τι να κανω και θα ηθελα καποιο tip ωστε να τις λυσω
1) εστω f,g συναρτησεις ορισμενες σρο R και παραγωγισιμες στο σημειο xο=0 αν ειναι f(0)=g(0) και f(x)+x>=g(x) για καθε χεR ν.δ.ο g'(0)-f'(0)=1
2)η συναρτηση f:R-->R ειναι συνεχης στο σημειο xοεR ν.δ.ο η συναρτηση g(x)=|x-xo|f(x)
ειναι παραγωγισιμη στο xo αν και μονο αν f(xo)=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 11 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 14 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 224 μέλη διάβασαν αυτό το θέμα:
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.