1)δινεται η συναρτηση f(x)=χσυνχ.Ν.δ.ο :
ι)η συναρτηση f ικανοποιει τις υποθεσεις του Θ.Rolle στο [-π/2,π/2]
ιι)η εξισωση χεφχ=1 εχει μαι τουλαχιστον ριζα στο (-π/2,π/2)
f(x)=xσυνx, x ανήκει R
ι) Η f είναι συνεχής και παραγωγίσιμη στο R με πρώτη παράγωγο f΄(x)=συνx-xημx, x ανήκει R
f(-π/2)=(-π/2)συν(-π/2)=-(π/2)συν(π/2)=-(π/2)*0=0
f(π/2)=(π/2)συν(π/2)=(π/2)*0=0
Άρα f(-π/2)=f(π/2)=0
Η f είναι συνεχής στο [-π/2,π/2], παραγωγίσιμη στο (-π/2,π/2) και ισχύει f(-π/2)=f(π/2). Επομένως ικανοποιούνται οι προϋποθέσεις του θεωρήματος Rolle στο διάστημα [-π/2, π/2]
ι) Σύμφωνα με το θεώρημα Rolle υπάρχει τουλάχιστον ένα ξ στο (-π/2, π/2) τέτοιο ώστε f΄(ξ)=0. Επειδή ξ ανήκει (-π/2, π/2) τότε ημξ>=0 και συνξ>0. Επομένως:
f΄(ξ)=0 <=> συνξ-ξημξ=0 <=> ξημξ=συνξ <=> ξεφξ=1 (αφού συνξ διάφορο 0)
2) Εστω f,g δυο συναρτησεις συνεχεις στο [α,β] και παραγωγισιμες στο (α,β) για τις οποιες ισχυουν:
ι)f(α)=g(α)=0 και
ιι)g'(χ)διαφορο του ο στο (α,β).
Ν.δ.ο :
α) g(β) διαφορο του 0.
β) η συναρτηση : h(x)=g(β)f(x)-f(β)g(x) ικανοποιει τις υποθεσεις του Θ.Rolle στο [α,β].
γ) υπαρχει τουλαχιστον ,χ0 ε (α,β) τετοιο ωστε : f'(xo)/g'(xo) = f(β)/g(β).
α) Η συνάρτηση g είναι συνεχής στο [α,β] και παραγωγίσιμη στο (α,β). Επομένως σύμφωνα με το θεώρημα μέσης τιμής υπάρχει τουλάχιστον ένα ξ στο (α,β) τέτοιο ώστε g΄(ξ)=(g(β)-g(α))/(β-α)=g(β)/(β-α) αφού g(α)=0.
Ισχύει g΄(ξ) διάφορο 0. Επομένως g(β) διάφορο 0.
β) h(x)=g(β)f(x)-f(β)g(x), x ανήκει [α,β]
Επειδή οι f και g είναι συνεχείς στο [α,β] τότε και η h είναι συνεχής στο [α,β]
Επειδή οι f και g είναι παραγωγίσιμες στο (α,β) τότε και η h είναι παραγωγίσιμη στο (α,β) με πρώτη παράγωγο h΄(x)=g(β)f΄(x)-f(β)g΄(x) όπου x ανήκει (α,β)
h(α)=g(β)f(α)-f(β)g(α)=g(β)*0-f(β)*)=0
h(β)=g(β)f(β)-f(β)g(β)=0
Επομένως h(α)=h(β)=0
Η συνάρτηση h είναι συνεχής στο [α,β], παραγωγίσιμη στο (α,β) και ισχύει h(α)=h(β). Επομένως ικανοποιεί τις προϋποθέσεις του θεωρήματος Rolle στο διάστημα [α,β].
γ) Σύμφωνα με το θεώρημα Rolle υπάρχει τουλάχιστον ένα x0 στο (α,β) τέτοιο ώστε h΄(x0)=0. Επομένως έχουμε:
h΄(x0)=0 <=> g(β)f΄(x0)-f(β)g΄(x0)=0 <=> g(β)f΄(x0)=f(β)g΄(x0) <=> f΄(x0)/g΄(x0)=f(β)/g(β) εφόσον g(β) διάφορο 0 και g΄(x0) διάφορο 0
3) Eστω μια συναρτηση f, συνεχης στο [α,β] και παραγωγισιμη στο (α,β).Αν f(α)=β και f(β)=α να αποδειξετε οτι υπαρχει ενας τουλαχιστον χο ε(α,β) ωστε η εφαπτομενη της γραφικης παραστασης της f στο σημειο M(xo,f(xo)) να ειναι καθετη στην ευθεια ψ-χ=0.
Η f είναι συνεχής στο [α,β] και παραγωγίσιμη στο (α,β). Επομένως σύμφωνα με το θεώρημα μέσης τιμής υπάρχει τουλάχιστον ένα x0 στο (α,β) τέτοιο ώστε f΄(x0)=(f(β)-f(α))/(β-α)=(α-β)/(β-α)=[-(β-α)]/(β-α)=-1
Η εφαπτομένη (ε) της Cf στο (x0,f(x0)) έχει συντελεστή διεύθυνσης λε=f΄(x0)=-1
Η ευθεία (ζ) με εξίσωση y-x=0 <=> y=x έχει συντελεστή διεύθυνσης λζ=1
Παρατηρούμε ότι λελζ=(-1)*1=-1 που σημαίνει ότι οι ευθείες (ε) και (ζ) είναι κάθετες.