Όταν έχουμε διακρότημα στη φυσική η εξίσωση της συνισταμένης ταλάντωσης είναι x=2Aσυν[t X (ω1-ω2)/2]ημ[t X (ω1+ω2)/2]
Η εκφώνηση δίνει ότι η εξίσωση της συνισταμένης ταλάντωσης είναι χ=0,4συν(2πt)ημ(200πt) και ζητάει να βρεθούν τα Α, ω1 και ω2. Έχουμε Aσυν[t X (ω1-ω2)/2]ημ[t X (ω1+ω2)/2]=0,4συν(2πt)ημ(200πt) και αυθόρμητα λέει κανείς ότι 2A=0,4, (ω1-ω2)/2=2π και (ω1+ω2)/2=200π και λύνει το σύστημα. Ωραία μέχρι εδώ. Υπάρχει κάποια
μαθηματική απόδειξη γιατί πήραμε τις παραπάνω σχέσεις; Η διαδικασία αυτή μου θυμίζει πολύ την ισότητα των πολυωνύμων στην οποία απαιτούμε οι συντελεστές των ομοιοβάθμιων όρων να είναι ίσοι. Τώρα όμως δεν έχουμε πολυώνυμα. Το 2A=0,4 το καταλαβαίνω. Το πρώτο μέλος έχει μέγιστο το Α, το δεύτερο μέλος έχει μέγιστο το 0,4 και ως ίσα πρέπει να έχουν το ίδιο μέγιστο. Για τις ποσότητες όμως μέσα στο ημίτονο και το συνημίτονο τι γίνεται; Γιατί δηλαδή να μην είναι (ω1-ω2)/2#2π και (ω1+ω2)/2#200π και να είναι κατάλληλα συνδυασμένοι έτσι ώστε για κάθε τιμή του t να παίρνουμε την ίδια τιμή; Δοκίμασα με παραγώγιση αλλά δεν κατέληξα κάπου. Πιστεύω να καταλάβατε τι εννοώ.