
10-05-09

16:55
Σωστό είναι, επειδή το Δ είναι διάστημα. Αν μιλούσαμε για ορισμό και συνέχεια σε ένωση θα ήταν λάθος.
'Εστω χ1,χ2,χ3 στο Δ με f να μην είναι γνησίως μονότονη. Θεωρούμε ότι είναι γνησίως αύξουσα στο [χ1,χ2] και γνησίως φθίνουσα στο [χ2,χ3]. Θα είναι f(x1)<f(x2) και f(x2)>f(x3), με τις τρεις αυτές τιμές να διαφέρουν ανά δύο, δεδομένου ότι η f είναι 1-1. Ας θεωρήσουμε, λοιπόν, αυθαίρετα ότι f(x1)<f(x3)***. Εφαρμόζοντας ΘΕΤ για την f συνεχή στο [χ2,χ3] ως υποδιάστημα του Δ, βρίσκουμε ότι υπάρχει ένα τουλάχιστον xo στο ανοιχτό, ώστε για τιμή κ της συνεχούς f μεταξύ f(x2) και f(x3) να είναι f(xo)=κ. Eφαρμόζοντας ένα ακόμη ΘΕΤ στην f, συνεχή στο [χ1,χ2] ως υποδιάστημα του Δ, για το ίδιο ακριβώς κ (δεδομένης της υπόθεσης ***, το κ ανήκει και στο διάστημα μεταξύ f(x1) και f(x2) ), θα υπάρχει και ξ στο (χ1,χ2) ώστε f(ξ)=κ. Δεδομένου ότι ξ διάφορο του χο, με αντιστοιχιζόμενες τιμές ίσες και ίσες με κ, τότε η f δεν θα ήταν 1-1 στο Δ, πράγμα άτοπο.
Ομοίως κι αν είχε άλλης μορφής μονοτονία σε κάθε διάστημα ή αν f(x3)<f(x1).
riemman, επειδή σε βλέπω ώρα στο θέμα, θα ρίξεις μια ματιά να μου πεις;
Και κάτι ακόμη, το παραπάνω χθες το συζητήσαμε ως άσκηση (είχε και f'(x) διάφορο του μηδενός), με την f παραγωγίσιμη στο Δ. Και ζητούσε να αποδείξουμε ότι η f είναι γνησίως μονότονη. Πρώτα απέδειξα ότι είναι 1-1 (εφαρμογή Rolle και άτοπο) και κατόπιν απέδειξα τη μονοτονία με το παραπάνω. Υπήρχε τρόπος να μην περάσω καν από 1-1 ?
Σωστος.:no1:Υπαρχει και στου γκατζουλη το 1ο τευχος σαν εφαρμογη.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.