δεν ξέρω latex ίσωσ δυσκολευτείς λίγο.
1.f'(x)=a^xlna Aν α=1 είναι σταθερή.Αν α>1 η Φ(χ) είναι γνησίως αύξουσα,αν 0<α<1 είναι γνησίως φθίνουσα.
Η σχέση για α=1 ισχύει. Εστω α διάφορο του 1.Στο β mέλος της σχέσης παίρνω -(λ-2)λlna+(λ-2)lna. Tα πάω στο πρώτο
και παίρνω f(λ(λ-2)=f(λ-2).Η φ είναι 1-1 άρα πρέπει λ(λ-2)=λ-2
2.....Θα παραγωγίσω την σχέση που δίνεται.Πρώτα όμως θα αποδείξουμε οότι υπάρχει η δεύτερη παράγωγος.
limf'(x)-f'(x0)/x-x0=πολλ.τοf'(x)+f'(x0)στον αριθμητη και στον παρον.και κανω την διαφορά τετραγώνων.=lim(f'(x)^2-f'(x0)^2)/(x-x0)(f'(x)+f'(x0)=lim(2(f(x)-f(x0))/(x-x0)(f'(x)+f'(x0))=το όριο υπάρχει κιαι ισούται με=2f'(x0)/2f'(x0)=1
Παραγωγίζω την αρχικη σχέση.
2f'(x)f"(x)=2f'(x) επειδή f'(x) όχι μηδέν παίρνω ότι f''(x)=1.Oλοκληρώνοντας 2 φορρές παίρνω το ζητούμενο.
β)γνωστο
3)Χρησιμοποιώ ολοκλήρωση κατά παράγοντες
ολοκληρωμα από 1έως3 της xf'(x)=[xf(x)](1εως3)-ολοκλήρωμα απο 1 έως3 της f(x) σχεση 1
ολοκλ.από 1 έως 3 τησ f(x)=oλοκλ.απο 1 έως 2 της f(x)+ολοκλ.από 2 έως 3 της f(x) σχέση 2
Αντικαθιστώ τις σχέσεις που δίνει η άσκηση στην σχέση 2 και μετά την σχέση 2 στην 1
και παίρνω ολοκλ.χf'(x) από 1 έως 3=0
Αυτό είναι το ζητούμενο αν το σπάσω σε δύο ολοκληρώματα και αλλάξω μέλη και πλευρικά όρια λογω του μείον.
2)Πράγματι γιατί g(1)=g(3)=0
3)Για την g του β ερωτήματος ισχύει:
g συνεχης στο [1,3],παραγωγίσιμη στο (1,3) και g(1)=g(3).από θ Rοlle
υπάρχει ξε(1,3) με g'(ξ)=0 ή ξf'(ξ)=0 ή f'(ξ)=0 επειδή ξ διάφορο του μηδέν.klk
-----------------------------------------
Rory το lna>0 γιατι ισχυει?
έχεις δίκιο vanato.ευχαριστώ.