blacksheep
Πολύ δραστήριο μέλος
Για αυτο ειπα κανεις το μετασχηματισμο και λογαριθμεις και προκυπτει η αρχικη.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
manos66
Εκκολαπτόμενο μέλος
Β) Εστω συναρτηση f, μη σταθερη και συνεχης στο [α.β] τετοια ώστε: f(x)>=0 για κάθε χ Ε [a,b]
(i) Να δέιξετε ότι για κάθε χ1, χ2 Є [α,β] υπαρχει κ Є (α,β) ώστε f(k)=√(f(x1)f(x2))
(ii) Να δείξετε ότι υπαρχει λ Є (α,β) ώστε f(λ)≥√(f(x1)f(x2)) για κάθε χ1, χ2 Є [α,β]
Πρέπει να διορθώσεις κάτι στο (i) ερώτημα
Για παράδειγμα η συνάρτηση
Δεν υπάρχει κ που να ικανοποιεί το ζητούμενο
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
μπορείτε παρακαλω να με βοηθήσετε με δυο ασκήσεις που με δυσκολευουν;
1η ασκηση
Δινεται ο μιγαδικος w= α^2/z + 1 + ι^2007 , α διαφορο του μηδενος και τετοιος ωστε μετρο του w να ειναι ισο με 3 δλδ /w/=3. Εστω και η συναρτηση f(x)= (ημ(αχ))^2/ χ^2 - κ^2* (e^x-συνχ)/χ και f(0)=λ^2
(ι) να βρείτε το γ.τ. του z=κ + λi αν η f ειναι συνεχης στο 0
(ιι) να βρείτε την μέγιστη και την ελαχιστη τιμη του μετρου του μιγαδικου z
2η ασκηση
Α) Δινονται οι συνεχεις στο R συναρτησεις f , f-1 me f(0)=fʼ(0)=0. Να δειξετε ότι η συναρτηση f-1 δεν παραγωγίζεται στο χ0=0
Β) Εστω συναρτηση f, μη σταθερη και συνεχης στο [α.β] τετοια ώστε: f(x)>=0 για κάθε χ Ε [a,b]
(i) Να δέιξετε ότι για κάθε χ1, χ2 Є [α,β] υπαρχει κ Є (α,β) ώστε f(k)=√(f(x1)f(x2))
(ii) Να δείξετε ότι υπαρχει λ Є (α,β) ώστε f(λ)≥√(f(x1)f(x2)) για κάθε χ1, χ2 Є [α,β]
1) Χρησιμοποιησε την συνεχεια στο μηδεν και αντικατεστησε το w στην σχεση |w|=3
2)Αναλογα με τον γ.τ που θα βρεις, ειναι κλασσικο ερωτημα
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
shikabalas
Εκκολαπτόμενο μέλος

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
Με την λογαριθμιση,αν δεν εχω κανει πατατα,προκυπτει οτι e^a+lna+1=e^b+lnb+1.Ομως η f(a) ισουται με e^a+lna+α.Κατι λαθος κανω τωρα μαλλον αλλα δεν ξερω τι.![]()
Κανενα λαθος και εγω αυτο βγαζω γιαυτο λεω οτι θα επρεπε να βγαινει με βαση την f(x) , αλλα εσυ μην κολας απλα δειξε οτι g(x)=e^x+lnx ειναι 1-1 αφου ειναι μαπα η ασκηση
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
blacksheep
Πολύ δραστήριο μέλος
f(x)=lnx+e^x+1
αμα κανεις χιαστι και λογαριθμησεις εμενα μου βγαινει e^α+1+lna=e^b+1+lnb
που δεν ειναι απο το πρωτο ερωτημα.Αρα καπου υπαρχει κολλημα
Αιι τωρα διαβασα τα ποστ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
shikabalas
Εκκολαπτόμενο μέλος
-----------------------------------------
Ναι παιζει και να ναι λαθος της ασκησης.Α και σε μια αλλη που ψιλιαζομαι λαθος,λεει οτι για την f ισχυει: f(f(f(x)))+f(x)=x+3 και μετα σε ενα απο τα πολλα ερωτηματα,να δειξεις οτι η αντιστροφη ισουται με f(x)+x-2.Πως γενεν αυτο?

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ledzeppelinick
Πολύ δραστήριο μέλος
Ίσως να χρειάζεται και κάποιο πρηγούμενο ερώτημα της άσκησης..OK thanks και στους δυο σας!
-----------------------------------------
Ναι παιζει και να ναι λαθος της ασκησης.Α και σε μια αλλη που ψιλιαζομαι λαθος,λεει οτι για την f ισχυει: f(f(f(x)))+f(x)=x+3 και μετα σε ενα απο τα πολλα ερωτηματα,να δειξεις οτι η αντιστροφη ισουται με f(x)+x-2.Πως γενεν αυτο?![]()
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
lowbaper92
Πολύ δραστήριο μέλος
Θέτεις οπου x τοOK thanks και στους δυο σας!
-----------------------------------------
Ναι παιζει και να ναι λαθος της ασκησης.Α και σε μια αλλη που ψιλιαζομαι λαθος,λεει οτι για την f ισχυει: f(f(f(x)))+f(x)=x+3 και μετα σε ενα απο τα πολλα ερωτηματα,να δειξεις οτι η αντιστροφη ισουται με f(x)+x-2.Πως γενεν αυτο?![]()
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mixas!!
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kyriakos21
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Alibaba
Νεοφερμένο μέλος
1) Χρησιμοποιησε την συνεχεια στο μηδεν και αντικατεστησε το w στην σχεση |w|=3
2)Αναλογα με τον γ.τ που θα βρεις, ειναι κλασσικο ερωτημα
στην 1) κανοντας χρηση τησ συνεχειας δν μπορω να βρς το οριο της f(x) sto 0 μπορεισ να με βοηθησεις?
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
coheNakatos
Δραστήριο μέλος
μπορείτε παρακαλω να με βοηθήσετε με δυο ασκήσεις που με δυσκολευουν;
1η ασκηση
Δινεται ο μιγαδικος w= α^2/z + 1 + ι^2007 , α διαφορο του μηδενος και τετοιος ωστε μετρο του w να ειναι ισο με 3 δλδ /w/=3. Εστω και η συναρτηση f(x)= (ημ(αχ))^2/ χ^2 - κ^2* (e^x-συνχ)/χ και f(0)=λ^2
(ι) να βρείτε το γ.τ. του z=κ + λi αν η f ειναι συνεχης στο 0
(ιι) να βρείτε την μέγιστη και την ελαχιστη τιμη του μετρου του μιγαδικου z
2η ασκηση
Α) Δινονται οι συνεχεις στο R συναρτησεις f , f-1 me f(0)=fʼ(0)=0. Να δειξετε ότι η συναρτηση f-1 δεν παραγωγίζεται στο χ0=0
Β) Εστω συναρτηση f, μη σταθερη και συνεχης στο [α.β] τετοια ώστε: f(x)>=0 για κάθε χ Ε [a,b]
(i) Να δέιξετε ότι για κάθε χ1, χ2 Є [α,β] υπαρχει κ Є (α,β) ώστε f(k)=√(f(x1)f(x2))
(ii) Να δείξετε ότι υπαρχει λ Є (α,β) ώστε f(λ)≥√(f(x1)f(x2)) για κάθε χ1, χ2 Є [α,β]
Και
Αρα τελικα
Και επειδη f συνεχης στο μηδεν και
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ledzeppelinick
Πολύ δραστήριο μέλος
1)μπορείτε παρακαλω να με βοηθήσετε με δυο ασκήσεις που με δυσκολευουν;
1η ασκηση
Δινεται ο μιγαδικος w= α^2/z + 1 + ι^2007 , α διαφορο του μηδενος και τετοιος ωστε μετρο του w να ειναι ισο με 3 δλδ /w/=3. Εστω και η συναρτηση f(x)= (ημ(αχ))^2/ χ^2 - κ^2* (e^x-συνχ)/χ και f(0)=λ^2
(ι) να βρείτε το γ.τ. του z=κ + λi αν η f ειναι συνεχης στο 0
(ιι) να βρείτε την μέγιστη και την ελαχιστη τιμη του μετρου του μιγαδικου z
2η ασκηση
Α) Δινονται οι συνεχεις στο R συναρτησεις f , f-1 me f(0)=fʼ(0)=0. Να δειξετε ότι η συναρτηση f-1 δεν παραγωγίζεται στο χ0=0
Β) Εστω συναρτηση f, μη σταθερη και συνεχης στο [α.β] τετοια ώστε: f(x)>=0 για κάθε χ Ε [a,b]
(i) Να δέιξετε ότι για κάθε χ1, χ2 Є [α,β] υπαρχει κ Є (α,β) ώστε f(k)=√(f(x1)f(x2))
(ii) Να δείξετε ότι υπαρχει λ Є (α,β) ώστε f(λ)≥√(f(x1)f(x2)) για κάθε χ1, χ2 Є [α,β]
Αφού f συνεχής στο 0 τότε limf(x)=f(0)=λ^2. Kαι έτσι:
Το δεύτερο όριο:
Γ.Τ. του z : Κύκλος με Κ(-1,-1) και ρ=3
και μετά για το ii) κάνεις την κλασική μεθοδολογία!
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
nickrgx420s
Νεοφερμένο μέλος
1. Αν 0 < α < β, να αποδειξετε: αe < (β^β/α^α)^1/β-α < βe
2. Αν f ' (x) = f (x) <=> f (x) = ce^x
Βρειτε ολες τις συναρτησεις f που ικανοποιουν την ισοτητα: f '' (x) = f ''' (x) για καθε xεR
3. Δινεται η παρ/μη συναρτηση f: R --> R. Αν η συναρτηση g(x)=2xf(x) - f ' (x)
ειναι περιττη, να αποδειχθει:
i) η h (x) = [ f (-x) - f (x) ] e^-x^2 (η παρασταση επι e στην -x^2) ειναι σταθερη
ii) η f ειναι αρτια
thnx

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
asap
Νεοφερμένο μέλος
ναι μηδενOσον αφορα την 1)
εχουμε
f'(x+y)=f'(x)+2xy+y^2
Για x=o εχουμε f'(y)=f'(0)+y^2 . και f'(o)=1 απο το οριο.E μετα με αντιπαραγωγιση εχουμε
f(x)=x^3/3+x+c.Γνωριζεις απο την αρχικη σχεση f(0)=0 Αρα f(x)=x^3/3+x
Asap σε σενα απευθυνεται/.
-----------------------------------------
Στο 0 εννοει λογικα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Rania.
Πολύ δραστήριο μέλος
Η υλη ειναι τα παντα απο μιγαδικους, συναρτησεις, ορια και συνεχεια. Εχω διαβασει αψογα θεωρια, αποδειξεις, ορισμους, εχω κανει 3 διαγωνισματα Μπαρλα, εχω διαβασει ολα τα παραδειγματα των ομαδων που εχει το Στεργιου-Νακη και ακομα αγχωμενη ειμαι. Δεν μπορω να κατσω να διαβασω αλλο, θα με πιασει το στομαχι μου. :p
Σε τι να δωσω εμφαση;
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
blacksheep
Πολύ δραστήριο μέλος
Βασικα,μη διαβασεις αλλο.Ετσι και αλλιως το χεις.
Τα μαθηματικα πανω απο ολα θελουν καθαρο μυαλο.Btw πηρα και αλλο 100.:xixi:Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
agiostimotheos
Δραστήριο μέλος
Μην του λες τετοια γιατι μενουν κατι αποριες απο την Α ' λυκειου "ΝΑ" .
Λεει το βιβλιο της 1ης : "Αν α=β τοτεΤο αντιστροφο ΔΕΝ ισχυει π.χ
ενω
"![]()
Αρα το αντιστροφο ισχυει μονο για ΘΕΤΙΚΟΥΣ και![]()
αληθεύει οτι δεν μου λύθηκε η απορία.
έχουμε 1 εις την πρώτη ίσον έναν
και ένα εις την μηδενική ίσον ένα
άρα αφού οι βάσεις είναι ίδιες πώς γίνεται οι εκθέτες να μην είναι?
-----------------------------------------
ισχύει η ιδιότητα μόνο να εκθέτες μεγαλύτερους του μηδέν? δν κτλβ
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Rania.
Πολύ δραστήριο μέλος
Η
Η ιδιοτητα που λες ισχυει μονο στις εκθετικες συναρτησεις.
Ενταξει τωρα;
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 13 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 231 μέλη διάβασαν αυτό το θέμα:
- ChrisG152
- giorgos5002
- giannis06
- Panagiwths12
- mikke
- hristosdab
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Lathy
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.
Αρχική Forum
Ρωτήστε κάτι
Προσωπικές Συζητήσεις
Πανελλαδικές
Αγγελίες
Συνδεδεμένοι Χρήστες
Λίστα Αποκλεισμένων
Υπεύθυνοι του Forum
e-steki
