μπορείτε παρακαλω να με βοηθήσετε με δυο ασκήσεις που με δυσκολευουν;
1η ασκηση
Δινεται ο μιγαδικος w= α^2/z + 1 + ι^2007 , α διαφορο του μηδενος και τετοιος ωστε μετρο του w να ειναι ισο με 3 δλδ /w/=3. Εστω και η συναρτηση f(x)= (ημ(αχ))^2/ χ^2 - κ^2* (e^x-συνχ)/χ και f(0)=λ^2
(ι) να βρείτε το γ.τ. του z=κ + λi αν η f ειναι συνεχης στο 0
(ιι) να βρείτε την μέγιστη και την ελαχιστη τιμη του μετρου του μιγαδικου z
2η ασκηση
Α) Δινονται οι συνεχεις στο R συναρτησεις f , f-1 me f(0)=fʼ(0)=0. Να δειξετε ότι η συναρτηση f-1 δεν παραγωγίζεται στο χ0=0
Β) Εστω συναρτηση f, μη σταθερη και συνεχης στο [α.β] τετοια ώστε: f(x)>=0 για κάθε χ Ε [a,b]
(i) Να δέιξετε ότι για κάθε χ1, χ2 Є [α,β] υπαρχει κ Є (α,β) ώστε f(k)=√(f(x1)f(x2))
(ii) Να δείξετε ότι υπαρχει λ Є (α,β) ώστε f(λ)≥√(f(x1)f(x2)) για κάθε χ1, χ2 Є [α,β]