
21-02-12

21:43
μπορει να με βοηθησει κανενας??
Να βρεθει ο γεωμετρικος τοπος των σημειων Μ(χ,y) του επιπεδου για τα οποια ισχυει : x(στη τριτη) + y(στην τριτη) + x(τετραγωνο)*y + x*y(τετραγωνο) =x+y
*=(επι)
Σωστή μέχρι ενός σημείου η απάντηση του tebelis13 αλλά δεν έχει βρει όλα τα σημεία του ζητούμενου γεωμετρικού τόπου. Εγώ θα επιχειρήσω μια άλλη προσέγγιση με μετασχηματισμό σε πολικές συντεταγμένες που ξεφεύγει κάπως από τη σχολική ύλη.
Οι πολικές συντεταγμένες του σημείου M(x,y) δίνονται από τις σχέσεις:
x=ρ*συνφ
y=ρ*ημφ
όπου για οποιοδήποτε σημείο του επιπέδου Oxy, με εξαίρεση την αρχή Ο(0,0), είναι ρ=(ΟΜ)>0 και 0<=φ<2π η αριστερόστροφη γωνία (αντίθετα από τους δείκτες του ρολογιού) που σχηματίζει το μοναδιαίο διάνυσμα i στον θετικό ημιάξονα Ox με την διανυσματική ακτίνα ΟΜ. Για την αρχή Ο(0,0) είναι ρ=0 και δεν ορίζεται φ.
Αντικαθιστώντας στην αρχική εξίσωση έχουμε:
x^3+y^3+x^2y+xy^2=x+y
(ρσυνφ)^3+(ρημφ)^3+(ρσυνφ)^2ρημφ+ρσυνφ(ρημφ)^2=ρσυνφ+ρημφ
(ρ^3)συν^3φ+(ρ^3)ημ^3φ+(ρ^3)ημφσυν^2φ+ρ^3ημ^2φσυνφ=ρ(ημφ+συνφ)
(ρ^3)(συν^3φ+ημφσυν^2φ+ημ^3φ+ημ^2φσυνφ)-ρ(ημφ+συνφ)=0
(ρ^3)[συν^2φ(ημφ+συνφ)+ημ^2φ(ημφ+συνφ)]-ρ(ημφ+συνφ)=0
(ρ^3)(ημφ+συνφ)(ημ^2φ+συν^2φ)-ρ(ημφ=συνφ)=0
(ρ^3)(ημφ+συνφ)-ρ(ημφσυνφ)=0
ρ(ρ^2-1)(ημφ+συνφ)=0
α) Αν ρ=0 τότε x=y=0, οπότε η αρχή Ο(0,0) είναι σημείο του γεωμετρικού τόπου
β) Αν ρ^2-1=0 => ρ^2=1 τότε ρ=1 αφού ρ>0 που είναι η εξίσωση κύκλου (ρ=σταθερό) με ακτίνα R=1 και κέντρο την αρχή Ο(0,0). Δηλαδή τα σημεία της περιφέρειας του κύκλου με εξίσωση x^2+y^2=1 είναι σημεία του γεωμετρικού τόπου
γ) ημφ+συνφ=0 <=> ημφ=-συνφ
Αν συνφ=0 τότε θα ήταν και ημφ=0 αφού ημφ=-συνφ που είναι άτοπο γιατί τότε θα ήταν ημ^2φ+συν^2φ=0 διάφορο 1. Άρα συνφ διάφορο 0 και συνεπώς ημφ διάφορο 0. Επομένως έχουμε ισοδύναμα:
ημφ=-συνφ <=> εφφ=-1 <=> εφφ=-εφπ/4 <=> εφφ=εφ(-π/4) <=> φ=κπ-π/4 όπου κ ανήκει Z
0<=φ<2π => 0<=κπ-π/4<2π => π/4<κπ<9π/4 => 1/4<κ<9/4 => κ=1 ή κ=2
Αν κ=1 τότε φ=π-π/4=3π/4, οπότε
ημφ=ημ3π/4=ημ(π-π/4)=ημπ/4=SQRT(2)/2
συνφ=συν3π/4=συν(π-π/4)=-συνπ/4=-SQRT(2)/2
x=ρσυνφ=-(SQRT(2)/2)ρ
y=ρημφ=(SQRT(2)/2)ρ
Από τις 2 τελευταίες σχέσεις προκύπτει με απαλοιφή του ρ ότι x=-y => y=-x. Επειδή είναι ρ>0 η λύση αυτή περιλαμβάνει τα σημεία της ευθείας y=-x όπου x<0.
Αν κ=2 τότε φ=2π-π/4=7π/4, οπότε
ημφ=ημ7π/4=ημ(2π-π/4)=ημ(-π/4)=-ημπ/4=-SQRT(2)/2
συνφ=συν7π/4=συν(2π-π/4)=συν(-π/4)=συνπ/4=SQRT(2)/2
x=ρσυνφ=(SQRT(2)/2)ρ
y=ρημφ=-(SQRT(2)/2)ρ
Από τις 2 τελευταίες σχέσεις προκύπτει με απαλοιφή του ρ ότι y=-x. Επειδή είναι ρ>0 η λύση αυτή περιλαμβάνει τα σημεία της ευθείας y=-x όπου x>0.
Επομένως ο ζητούμενος γεωμετρικός τόπος αποτελείται από όλα τα σημεία του κύκλου x^2+y^2=1 και της ευθείας y=-x. Δηλαδή ισχύει (x+y)(x^2+y^2-1)=0.
Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.