
22-08-08

11:28
Άλλη άσκηση από τον καθηγητή μου.Μάλλον εύκολη αλλά κάπου σκαλώνω.
Να δειχθεί γιά κάθε μιγαδικό z ότι |1+z|< = |1+z|^2 +|z|.
Άμα δεν με βοηθήσετε καί τώρα δεν ξαναρωτάω![]()
αν |z+1|>1 τοτε προφανως ισχυει.
αν
συμφωνα με την τριγωνικη ανισωτητα ισχυει:
απο (1),(2) παιρνουμε οτι
Αν βαλουμε στην σχεση προς αποδειξη οπου z=0 τοτε:
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.