paganini666
Δραστήριο μέλος
Ο Ίωνας αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 33 ετών και Απόφοιτος. Έχει γράψει 468 μηνύματα.

10-07-09

16:10
μα καλα θα μας τρελανεις;Όταν 2 σύνολα Α και Β περιέχουν στοιχεία πεπερασμένου πλήθους ίσα σε αριθμό και για τα 2 σύνολα, τότε είναι ισοδύναμα. Αν τα σύνολα Α και Β περιέχουν άπειρα σε πλήθος στοιχεία, αλλά είναι διακεκριμένα και μεμονομένα μεταξύ τους τότε θα πρέπει σε ένα στοιχείο του Α να αντιστοιχεί ένα στοιχείο του Β και αντίστροφα. Για παράδειγμα τα σύνολα Ν και Ζ περιέχουν άπειρο αριθμό στοιχείων αλλά δεν είναι ισοδύναμα. Τα σύνολα των άρτιων και περιττών ακεραίων είναι ισοδύναμα.
Οι φυσικοί μπορεί να είναι διπλάσιοι από τους άρτιους αλλά επειδή σε κάθε φυσικό Ν αντιστοιχεί ένας άρτιος φυσικός και αντίστροφα και επειδή τα στοιχεία και των δύο συνόλων είναι άπειρα σε αριθμό αλλά διακεκριμένα (δηλαδή τα σύνολα είναι αριθμήσιμα, σε σύνολα αριθμών αυτό σημαίνει ότι δεν σχηματίζουν διάστημα) τότε είναι ισοδύναμα.

-----------------------------------------
εεεε;Γίνεται. Τα σύνολα Ν και Z είναι ισοδύναμα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.