Silent_Killer
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Μαν πρέπει να φάω τώρα, ίσως αργότερα αν μπορώ.
Καλή σου όρεξη και σε ευχαριστώ!! Θα το εκτιμούσα αν έκανες τον κόπο
![Κλείνω μάτι ;) ;)](https://www.e-steki.gr/images/smilies/wink.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
xristaras9
Διάσημο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
1)f(x)=x^2-1/x-1 , g(x)=x+1
2)f(x)=ρίζα χ(χ-1) G(x)=ρίζα x επι ριζα χ-1
Θα ημουν ευγνώμων σε όποιον βοήθαγε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
1) Η f έχει πεδίο ορισμού όλα τα x στο R εκτός από το x=1 αλλά ο τύπος της είναι ίδιος με αυτόν της g αν κάνεις απλοποιήσεις. Άρα είναι ίσες για x διάφορο του 1. Ομοίως κάνεις το 2
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Δίνονται οι συναρτήσεις f και g: R -> R με g(x) =x^2+αx+β και fog = gof. Αν υπάρχει ένα μόνο ξ εν R τέτοιο ώστε f(ξ) = ξ, να δείξετε ότι: (α-1)^2 = 4β.
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eyb0ss
Δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Για ευκολία το ξ θα το κάνω p.Λύνει κανένας την παρακάτω:
Δίνονται οι συναρτήσεις f και g: R -> R με g(x) =x^2+αx+β και fog = gof. Αν υπάρχει ένα μόνο ξ εν R τέτοιο ώστε f(ξ) = ξ, να δείξετε ότι: (α-1)^2 = 4β.
Οι συναρτήσεις
Τα LHS των (1),(2) είναι ίσα οπότε:
Όπου x το p:
Επειδή το p είναι το μοναδικό x που ικανοποιεί την σχέση f(x)=x υποχρεωτικά θα είναι
Δηλαδή
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Resistance
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dimitrakak
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Έρεβος
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Δες το λίγο "εμπειρικά" (Ξερει κανεις γιατι οταν lim|f(x)|=|l| με l διαφορο του 0 η f(x) μπορει να εχει αλλα και να μην εχει οριο;
![whistle :whistle: :whistle:](https://www.e-steki.gr/images/smilies/whistle.gif)
Έστω ότι η f είναι της μορφής:
Τότε:
αλλά και:
Έστω τώρα ότι η f είναι της μορφής:
Τότε:
ΟΜΩΣ το
Άρα δεν μπορούμε να πούμε κάτι για το όριο της f γνωρίζοντας μόνο αυτό τής |f| (μπορεί να υπάρχει, μπορεί και όχι).
Το αντίστροφο, ωστόσο ισχύει!
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Dimitrakak
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Achilleas1997
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Οι γραφική παράσταση της είναι συμμετρική με την γραφική παράσταση της ως πρός την ευθεία y=x . Επομένως, αφού η γραφική παρασταση είναι κυρτή , η γραφική παράσταση της είναι κοίλη.
Για να χρησιμοποιησείς τους ορισμούς του σχολικού πρέπει να αποδείξεις:
1) Την συνέχεια της αντίστροφης, την διπλη παραγωγισιμοτητα κτλ ή
2) Την συνέχεια, την παραγωγισιμότητα και την μονοτονία της αντίστροφης
Δεν νομίζω ότι η αιτιολόγησή σου θα σου έδινε (όλες τις) μονάδες στις πανελλήνιες.
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
patben
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Vold
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Μπορειτε να μου πειτε πως να βρω το ολοκλήρωμα της f(x)=e^ -x απο 1 μεχρι 2 (αναλυτικη λυση θα ηθελα γιατι δεν εχω ιδεα απο ολοκληρώματα)
Τότε ρίξε μια ματιά πρώτα στην θεωρία, είναι απλά γελοίο το ολοκλήρωμα αυτό.
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
patben
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Michanikara
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Τι ακριβώς αλλάζει με την αφαίρεση της συνάρτησης
![](/proxy.php?image=http%3A%2F%2Fwww.e-steki.gr%2Fimages%2Fimported%2F2015%2F10%2Fgif-1.gif&hash=4a29f88e52ee23656c947802c94f2860)
Υποθέτω ότι πρέπει να ξεχάσω κάθε άσκηση που έχω κάνει χρησιμοποιώντας την. Υπάρχει κάποια λεπτομέρεια που χρειάζεται να προσέξω;
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
DumeNuke
Τιμώμενο Μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Μπορειτε να μου πειτε πως να βρω το ολοκλήρωμα της f(x)=e^ -x απο 1 μεχρι 2 (αναλυτικη λυση θα ηθελα γιατι δεν εχω ιδεα απο ολοκληρώματα)
Το αόριστο ολοκλήρωμα της e^(-x) είναι το -e^(-x) +c.
Οπότε, το ορισμένο από 1 ως 2 είναι
I=(-e^(-2)) - (-e^(-1))=e^(-1)-e^(-2)= (e-1)*e^(-2) = (e-1)/e^2
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![](/proxy.php?image=https%3A%2F%2Fwww.dropbox.com%2Fs%2F5di7yezzgk1zm6y%2F20151010_155259.jpg%3Fdl%3D0&hash=ecbea39231aea9ec31e8933e09f1de48)
https://www.dropbox.com/s/5di7yezzgk1zm6y/20151010_155259.jpg?dl=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Έρεβος
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
(α.1)Θεωρούμε συνάρτησημε
η οποία είναι 1-1 και έχει την ιδιότητα:
.
Αν η f είναι γνησίως αύξουσα στοτότε:
(α) Να αποδείξετε:
(α.1)και
(α.2)και
(α.3) Η εξίσωσηείναι αδύνατη!
(β) Αν επιπλέον είναι f(x)>0 για κάθε x<0 να δείξετε ότι η συνάρτηση δεν μπορεί να είναι γνησίως αύξουσα στο![]()
Είναι:
Αντικαθιστώ το x με 1/x (x>0):
(α.2)
Από ερώτημα (α.1) έχουμε ότι:
Για x=1 θα έχουμε:
Είναι
Απόδειξη:
Έστω
(αφού f γνησίως αύξουσα.)
Επίσης:
(αφού αν f γνησίως αύξουσα τότε και f^-1 γνησίως αύξουσα. /Γιατί?/ )
Άτοπο! Άρα κατ’ ανάγκη
Είναι:
Από ερώτημα (α.1) ισχύει
Άρα:
(α.3)
Έστω ότι υπάρχει
Τότε:
Διακρίνω τις περιπτώσεις:
*Αν
Όμως:
*Αν
Όμως
*Αν
Όμως
Άρα δεν υπάρχει
(β)
Έστω f γνησίως αύξουσα στο
Έστω
Άτοπο! Άρα δεν μπορεί η f να είναι γνησίως αύξουσα στο
-Προσοχή- Οι τύποι που δίνονται από την εκφώνηση (αν διαβάζω καλά) ισχύουν μόνο για x>0. Άρα κανονικά πρέπει να ελέγχουμε κάθε φορά που τους χρησιμοποιούμε αν ισχύει αυτή η προϋπόθεση! Επίσης χρειάζονται περισσότερες εξηγήσεις σε κάθε βήμα (π.χ. αν η f είναι γνησίως αύξουσα και πού κτλ.). Εγώ βαριόμουν να τα γράψω αυτά, αν και ένιωθα τύψεις.
![Embarrassment :redface: :redface:](https://www.e-steki.gr/images/smilies/redface.gif)
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 9 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 19 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 226 μέλη διάβασαν αυτό το θέμα:
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.