Η άσκηση του διημέρου

Status
Το θέμα δεν είναι ανοιχτό για νέες απαντήσεις.

Leo 93

Εκκολαπτόμενο μέλος

Ο Leo 93 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 31 ετών, Φοιτητής και μας γράφει απο Ηνωμένο Βασίλειο (Ευρώπη). Έχει γράψει 209 μηνύματα.
Δ) (απ΄τις αγαπημένες μου ασκήσεις)
Η συνάρτηση f είναι συνεχής στο [α,β] με και .
Να αποδείξετε ότι υπάρχει

Έστω ότι άτοπο λόγω εκφώνησης. Άρα υπάρχει

Έστω άτοπο
γιατί για x=α είναι .
Άρα υπάρχει

Θεωρούμε τη συνάρτηση , η οποία είναι συνεχής στο [a,b] με .

Άρα (θ.Bolzano) υπάρχει

Θα δείξω ότι το c βρίσκεται στο (α,β)
f(a)>cosa, άρα c δεν είναι ίσο με το a.

(*) O παραπάνω τρόπος δεν εγγυάται ότι το c βρίσκεται στο ανοιχτό διάστημα. Μπορούμε να δουλέψουμε και ως εξής.

Διαιρούμε στη δοσμένη με β-α και εφαρμόζουμε Θ.Μ.Τ. και βρίσκουμε

Ακόμη, f(a)>1>cosa.

Eφαρμόζουμε Bolzano στην στο [α,β].
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.
Ναι όντως η 1η λύση χάνει λίγο

Ας γράψω αναλυτικά τη 2η λύση σου (αν την κατάλαβα καλά)



Έστω



Έστω




Bolzano στο [α,c]

Η λύση που είχα εγώ υπόψιν




Έστω ότι
Τότε
Άρα υπάρχει ένα τουλάχιστον

Bolzano για την

Να βάλω τη λύση της Β?
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Leo 93

Εκκολαπτόμενο μέλος

Ο Leo 93 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 31 ετών, Φοιτητής και μας γράφει απο Ηνωμένο Βασίλειο (Ευρώπη). Έχει γράψει 209 μηνύματα.
Ας γράψω αναλυτικά τη 2η λύση σου (αν την κατάλαβα καλά)
Ναι, αυτό εννοούσα.

Να βάλω τη λύση της Β?
Βαλ' την.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.
Β) Έστω συνάρτηση παραγωγίσιμη στο [a,b] για την οποία ισχύει
Να δείξετε ότι υπάρχει

Α τρόπος


Έστω με την g να είναι γνησίως αύξουσα στο [a,b]


Από το θεώρημα ενδιάμεσων τιμών για την g υπάρχει

Β τρόπος
Έστω ότι δεν υπάρχει όπου


Ομοίως αν f(x)<Ax
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.
Άσκηση 5

Αν για τους μιγαδικούς ισχύουν



Να δείξετε ότι

Μην παιδεύεστε άδικα με τις κλασικές προϋποθέσεις για να είναι πραγματικοί οι μιγαδικοί. Θέλει κάτι άλλο, απλό και έξυπνο ;)
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Dias

Επιφανές μέλος

Ο Dias αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Καθηγητής κι έχει σπουδάσει στο τμήμα Φυσικής ΕΚΠΑ (Αθήνα). Έχει γράψει 10,196 μηνύματα.
Άσκηση 5
Αν για τους μιγαδικούς ισχύουν
(1)
(2)
(3)
Να δείξετε ότι
Αν στην 1η προσθέσουμε τη μοναδα (4)
και στη 2η το ίδιο:
(5)
Αν
(4) / (5) => ---> άτοπο.

Υ.Γ. Δεν μου αρέσει το lastex.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.
Σωστός και γρήγορος ο Δίας !

Άσκηση 6
Έστω συνεχής συνάρτηση f:R->R για την οποία ισχύει

α) Να αποδείξετε ότι η f είναι 1-1 και να βρείτε την αντίστροφη.

β) Να αποδείξετε ότι η γραφική παράσταση της f έχει ακριβώς ένα σημείο καμπής το οποίο να βρείτε

γ) Να υπολογίσετε το

χωρίς να κάνετε αντικατάσταση (δεν με ενδιαφέρει το τελικό αποτέλεσμα, οπότε φτάστε το μέχρι ένα σημείο)

δ) Να βρείτε το πλήθος των ριζών της εξίσωσης
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

vassilis498

Διακεκριμένο μέλος

Ο vassilis498 αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 7,079 μηνύματα.
χωρίς να κάνετε αντικατάσταση

δηλαδή πώς το εννοείς, να μην αντικαταστήσουμε τίποτα μέσα στο ολοκλήρωμα με κάποια σχέση που θα έχουμε, να μην εφαρμόσουμε μέθοδο αντικατάστασης, ή απλά να μην κάνουμε τις πράξεις ( αυτό που λες στην παρένθεση) ;
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.
δηλαδή πώς το εννοείς, να μην αντικαταστήσουμε τίποτα μέσα στο ολοκλήρωμα με κάποια σχέση που θα έχουμε, να μην εφαρμόσουμε μέθοδο αντικατάστασης, ή απλά να μην κάνουμε τις πράξεις ( αυτό που λες στην παρένθεση) ;

Να μην το λύσης με τη μέθοδο της αντικατάστασης.. Προσπάθησε να εκμεταλλευτείς κάποια συναρτησιακή σχέση.
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

tebelis13

Πολύ δραστήριο μέλος

Ο tebelis13 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος. Έχει γράψει 1,256 μηνύματα.
Σωστός και γρήγορος ο Δίας !

Άσκηση 6
Έστω συνεχής συνάρτηση f:R->R για την οποία ισχύει

α) Να αποδείξετε ότι η f είναι 1-1 και να βρείτε την αντίστροφη.

β) Να αποδείξετε ότι η γραφική παράσταση της f έχει ακριβώς ένα σημείο καμπής το οποίο να βρείτε

γ) Να υπολογίσετε το

χωρίς να κάνετε αντικατάσταση (δεν με ενδιαφέρει το τελικό αποτέλεσμα, οπότε φτάστε το μέχρι ένα σημείο)

δ) Να βρείτε το πλήθος των ριζών της εξίσωσης

α) αρα η f γν.αυξουσα αρα και 1-1



β)

γ)

δ)
που αν θεωρήσουμε συναρτηση και την μελετήσουμε θα δούμε ότι έχει μια ρίζα

p.s.:Σόρρυ παίδες δέν τα πάω πολύ καλά με το λάτεχ:P
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.

Δυσκολεύομαι να διαβάσω τη λύση σου (είναι και αργά). Θα την κοιτάξω αύριο. Πάντως ζήτησα και υπογράμμισα το ολοκλήρωμα να μη λυθεί με αντικατάσταση. Θα μου πεις ότι στις πανελλήνιες θα το λύσεις όπως θες. Απλά εδώ θέλω να δούμε μια πιο έξυπνη και ωραία λύση (που αν την σκεφτείτε εσείς ακόμα καλύτερα)
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

vassilis498

Διακεκριμένο μέλος

Ο vassilis498 αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 7,079 μηνύματα.
Άσκηση 6
Έστω συνεχής συνάρτηση f:R->R για την οποία ισχύει

γ) Να υπολογίσετε το

χωρίς να κάνετε αντικατάσταση (δεν με ενδιαφέρει το τελικό αποτέλεσμα, οπότε φτάστε το μέχρι ένα σημείο)

παραγωγίζω την αρχική σχέση





το f(0) κάνει 0 από την αρχική σχέση
τώρα για το f(6/5)



εδώ αν αντικαταστήσω x=6/5 και τα πάω στο πρώτο μέλος, με horner κλπ καταλήγω:



άρα f(6/5)=1 ( το άλλο δεν παίζει να χει ρίζα γιατί αφού f γν αύξουσα πρεπει να είναι μεγαλύτερο του f(0) δηλαδή θετικό)
edit: μια διόρθωση στα άκρα 6/5 αντί για 5/6

αυτό μας κάνει;
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.
Τεμπέλη, λίγο περίεργος ο τρόπος που βρίσκεις την αντίστροφη. Δεν βρίσκω λάθος βέβαια, αλλά καλύτερα να το κάνεις έτσι:



β)

Δείξαμε ότι f'(x)>0 άρα το πρόσημο της f'' εξαρτάται από την f.



Άρα η f έχει μοναδικό σημείο καμπής στο Α(0,f(0))

γ) Στο ολοκλήρωμα είστε σωστοί και οι δύο, χωρίς να κοίταξα πράξεις βέβαια. Βασίλη, πολύ ωραία λύση, δεν την είχα σκεφτεί.
Μπορούσες να βρεις το f(6/5) πιο εύκολα απ'την αντίστροφη. Δηλαδή: Για x=1 στον τύπο της αντίστροφης έχουμε


Η λύση που είχα εγώ στο μυαλό μου είναι:

στο οποίο έχουμε μόνο άγνωστο το ζητούμενο ολοκλήρωμα

δ)
Συνεχίζω τη λύση του τεμπέλη
Θέλουμε το πλήθος των ριζών της συνάρτησης

Κάνοντας πίνακα μονοτονίας έχουμε ότι η g είναι γνησίως αύξουσα στα Α1=(-οο,-1] και Α2=[1,+οο) και γνησίως φθίνουσα στο Α3=[-1,1]

Άρα η g δεν έχει ρίζα στο Α1


Άρα η g έχει μοναδική ρίζα στο Α2


Άρα η g δεν έχει ρίζα στο Α3

'Ασκηση 7

Δίνεται η f συνεχής συνάρτηση στο R, με ,

α) Να βρείτε το γεωμετρικό τόπο του z.

β) Να βρεθεί το όριο


γ) Αν το εμβαδόν της f με τον x'x από τη x=0 μέχρι τη x=1 είναι μικρότερο του , να δειχθεί ότι η εξίσωση έχει τουλάχιστον μία ρίζα στο
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Επεξεργάστηκε από συντονιστή:

13diagoras

Δραστήριο μέλος

Ο 13diagoras αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών, Φοιτητής και μας γράφει απο Αθήνα (Αττική). Έχει γράψει 550 μηνύματα.
Μακαρι να μη με προλαβε παλι κανεις...:spasiklas:
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Συνημμένα

  • P3240519.jpg
    P3240519.jpg
    301.8 KB · Εμφανίσεις: 253

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.
Διαγόρα ωραίες οι λύσεις σου ! Ας βάλω κάποιους δεύτερους τρόπους που έχω σαν λύσεις
α)
Δείξαμε ότι f(x)>0.
Αν |z|>1 τότε
Αν |z|<1 τότε
Άρα |z|=1

β)


κτλ

γ)



Όμως

Bolzano στο [0,1] για την h.

Άσκηση 8 (Ωραία αλλά δύσκολη άσκηση. Για να δούμε)

Έστω οι συνεχείς συναρτήσεις f,g με Df=Dg=R και ο μιγαδικός z ώστε να ισχύουν οι σχέσεις


Η g έχει συνεχή δεύτερη παράγωγο με

Επίσης θεωρήστε γνωστό (πρέπει βέβαια να ξέρετε την απόδειξη) ότι

α) Να δείξετε ότι η g είναι κυρτή και να βρείτε το γεωμετρικό τόπο των εικόνων του z.
β) Να δείξετε ότι
γ) Να δείξετε ότι
δ) Να δείξετε ότι υπάρχει ένα τουλάχιστον
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

Exomag

Νεοφερμένος

Ο Exomag αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 31 ετών, Φοιτητής και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 10 μηνύματα.
Νέο μέλος στο forum και αυτό είναι το πρώτο μου post...
Ορίστε και η λύση μου... Η άσκηση δεν ήταν τόσο δύσκολη τελικά... Εκτός βέβαια αν έχω κάνει κάποιο λάθος...
Άσκηση.jpg
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

13diagoras

Δραστήριο μέλος

Ο 13diagoras αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών, Φοιτητής και μας γράφει απο Αθήνα (Αττική). Έχει γράψει 550 μηνύματα.
Σωστος ο exomag.;)
Μια διαφορετικη ,λιγο,προσεγγιση σε ορισμενα ερωτηματα:
(a)ακριβως ετσι την ελυσα.
(b)εφαρμοσα ΘΜΤ στο[0,χ].
(c)ακριβως ετσι την ελυσα,επισης.
(d)πηρα bolzano στο 0 και ενα α στο οποιο σιγουρα η διαφορα f-g ειναι αρνητικη ,αλλιως,...ατοπο. Πρακτικα η ιδια λυση.

Φιλε lowbaper92 πολυ ωραιες οι ασκησεις σου!!
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

vassilis498

Διακεκριμένο μέλος

Ο vassilis498 αυτή τη στιγμή δεν είναι συνδεδεμένος. Έχει γράψει 7,079 μηνύματα.
όντως, ωραίες οι ασκησούλες
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

lowbaper92

Πολύ δραστήριο μέλος

Ο lowbaper92 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,504 μηνύματα.
Νέο μέλος στο forum και αυτό είναι το πρώτο μου post...
Ορίστε και η λύση μου... Η άσκηση δεν ήταν τόσο δύσκολη τελικά... Εκτός βέβαια αν έχω κάνει κάποιο λάθος...
View attachment 37578
Ωραία η λύση σου ! Η άσκηση θα ήταν σίγουρα πιο δύσκολη αν δεν είχα σπάσει το τελευταίο ερώτημα σε 2 υποερωτήματα, αλλά νομίζω τότε θα ήταν λίγο τσιμπημένη.
Μια παρατήρηση στη λύση σου (λεπτομέρεια βέβαια) στο (γ) ερώτημα. Το "=" στην ανισότητα ισχύει μόνο για το σημείο επαφής, άρα η συνάρτηση δεν είναι παντού μηδέν. Άρα όταν ολοκληρώνεις ισχύει μόνο το "μεγαλύτερο"

Εναλλακτική λύση για το (δ)
Δείξαμε ότι
Έστω ότι
Επειδή ,δεν ισχύει παντού το "ίσο με το μηδέν" άρα
Άρα θα υπάρχει
Θεωρούμε

Bolzano

Άσκηση 9

Έστω η παραγωγίσιμη συνάρτηση f:[α,β]->R με f(α)=α και f(β)=β. Αν 0<α<β να αποδείξετε ότι:

α)Υπάρχει εφαπτομένη ευθεία της γραφικής παράστασης της f, η οποία είναι παράλληλη στην ευθεία y=x.

β)Υπάρχει

γ) Υπάρχουν

δ) Αν υπάρχει η f'' και είναι συνεχής στο [α,β] και ισχύει , τότε η εξίσωση έχει λύση στο (α,β).

Και δώρο αυτή

Δίνεται συνάρτηση f παραγωγίσιμη στο R, με και . Αν η είναι γνησίως αύξουσα και η έχει ακρότατο στο , να βρεθεί το .
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:

Exomag

Νεοφερμένος

Ο Exomag αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 31 ετών, Φοιτητής και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 10 μηνύματα.
Ωραίες ασκήσεις:clapup: Ορίστε και οι λύσεις μου...
Άσκηση 9.jpgΆσκηση δώρο.jpg
 

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

Τελευταία επεξεργασία:
Status
Το θέμα δεν είναι ανοιχτό για νέες απαντήσεις.

Χρήστες Βρείτε παρόμοια

  • Τα παρακάτω 0 μέλη και 2 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:
    Tα παρακάτω 3 μέλη διάβασαν αυτό το θέμα:
  • Φορτώνει...
Top