απλα λες ο,τι να ναι,ετσι πιστευω,και τις δυο χρονιες επελεξαν συνειδητα οι θεματοδοτες να βαλουν θεματα αιφνιδιασμου,θεματα εμπνευσμενα απο τα πιο ακραιες ασκησεις του σχολικου,απεφυγαν τα κλασικα ερωτηματα και εκαναν καθε δυνατη προσπαθεια να βαλουν θεματα που να μη κυκλοφορουν στα βοηθηματα
2016
ΘΕΜΑ Β
Β4: γραφικη παρασταση,απλα δεν εμπαινε ποτε μεχρι τοτε,κανενας δεν επεμενε σε αυτο(3 μοναδες)
ΘΕΜΑ Γ
Γ2: ισοτητα τετραγωνων συναρτησεων,παρμενο απο μια επαναληπτικη ασκηση του σχολικου,χωρις κανενα σκαλοπατι λυσης,οπως δινοταν η ακηση του σχολικου,απο τα θεματα των πανελληνιων που σχεδον ολοι δεν ειχαν κανει ποτε παρομοιο στο φροντιστηριο και στο σχολειο,εβαλαν μια ξεχασμενη ασκηση του σχολικου σχετικη με ποσοδεικτες που δεν εχουν κανει ποτε οι μαθητες στο σχολειο(στο οριο της υλης) ,πιστευω οτι αυτο το ερωτημα περισσοτερο απο ολα τα αλλα φανερωνει την προθεση τους να βαλουν θεματα που τα βλεπει ο υποψηφιος πρωτη φορα (8 μοναδες επιανε)
Γ4 : χρηση μιας ξεχασμενης τριγωνομετρικης ταυτοτητας του σχολικου,(|ημx| <=|x|,xeR,η ισοτητα ισχυει μονο για x=0)(9 μοναδες επιανε)
2017
ΘΕΜΑ Α
Α2β : αντιπαραδειγμα για αιτιολογηση προτασης που αλλες χρονιες επεφτε Σ/Λ, τι πιο αναμενομενο απο το να περιμενουν να γραψεις το 1/4 της σελιδας 99 του σχολικου για το θεμα της θεωριας,οποιαδηποτε αλλη αιτιολογηση εκτος της χρησης συναρτησης που λειτουργει ως αντιπαραδειγμα βαθμολογειται με 0.(3 μοναδες επιανε)
ΘΕΜΑ Γ
Γ1: θεμα για αποδειξη δυο ακριβως εφαπτομενων απο σημειο,δε το λες και κλασικο (επιανε 8 μοναδες)
Γ2: ποσο συχνο για θεμα πανελληνιων το σχημα να ειναι το κεντρο της λυσης(6 μοναδες)
ΘΕΜΑ Δ
Δ1:προκυπτει η μελετη του προσημου του ημx + συνx στο (0,π),ενα παρα πολυ καλο σημειο αν η τριγωνομετρια ηταν κεφαλαιο της υλης της Γ,πιστευω οτι οι μαθητες της θετικης κατι εκαναν λογω της φυσικης με το τριγωνομετρικο κυκλο,αν και δε νομιζω οτι περιμενε κανενας μαθητης της θετικης να χρησιμοποιησει το τριγωνομετρικο κυκλο και στα μαθηματικα ,τωρα για τους αλλους μισους απλα τους εβγαλαν εκτος θεματος απο το πρωτο ερωτημα του(επιανε 5 μοναδες)
Γενικα,ακομα και η κατανομη των μοναδων στα ερωτηματα του θεματος κανει ξεκαθαρη την επιλογη τους
να φτιαξουν το πρωτοτυπο διαγωνισμα, στα κλασικα ερωτηματα δινονται ελαχιστες μοναδες σε σχεση με αυτες που δινονται στα πρωτοτυπα,περιεργα ερωτηματα,το 2016 στο θεμα Γ βγαζει ματι αυτο,τα δυο κλασικα ερωτηματα(Γ1,Γ3) πιανουν 8 μοναδες συνολικα ενω τα δυο πρωτοτυπα 17 μοναδες.Δεν ειναι τυχαιο που για αρκετους μαθητες το φετινο Δ4 ηταν και το απο τα πιο ευκολα ερωτηματα των Γ,Δ θεματων,απλα ηταν ενα θεμα που δουλευοταν αρκετα μεσα στη χρονια,το θεωρω το πιο τραβηγμενο αλλα απο τα κλασικα τραβηγμενα που κυκλοφορουν στα βοηθηματα και στα φροντιστηριακα φυλλαδια.
Σα τελικο σχολιο πιστευω οτι τα θεματα του 2016 και του 2017 θελουν καλυτερη μαθηματικη αντιληψη απο τα κλασικα θεματα με τις στρωμενες μεθοδολογιες ,απλα ειναι θεματα αντιθετα με τη λογικη των θεματων που κανουν κυριως μεσα στη χρονια οι μαθητες και αυτο το κανει τοσο δυσκολα,αλλο να σου βαλουν θεμα με Βοlzano,ΘΜΤ,αντιπαραγωγιση που στο καθε ενα απο αυτα αφιερωνετε σχολειο και φροντιστηριο τοσα μαθηματα και αλλο να σου βαλουν ενα θεμα με ισοτητα τετραγωνων συναρτησεων που στη καλυτερη περιπτωση να αφιερωσατε 25 λεπτα ολη τη χρονια ....