_ann_
Εκκολαπτόμενο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος


Εκφράζεις τις πλευρές συναρτήσει του x, θεωρείς κατάλληλη συνάρτηση και κάνεις Bolzano. Έτσι βγαίνει![]()
Δεν είναι ο μοναδικός τρόπος. Λύνεται και είτε θέτοντας σωστές συνταταγμένες στο καρτεσιανό ή μιγαδικό σ.σ. αντίστοιχα. Επίσης έχω κατά νού και έναν τρόπο καθαρά γεωμετρικό, αλλά χρησιμοποιεί το θεώρημα Stewart που είναι εκτός ύλης στο λύκειο.
Στέλιος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
petros185
Νεοφερμένος


Επειδή f(x) γνησίως αύξουσα ===> f(2x)<f(4x) και χ ανήκει θετικούς.
f(2x)/f(x) < f(100x)/f(x) <f(2^7x)/f(x) (1)
Τώρα επειδή f(2x)/f(x)=1 όταν χ---00 θα μπορούσαμε να κατασκευάσουμε την (1) ως εξής
f(2^7χ) f(2^6χ) f(2^5χ) ..................f(2χ)
------- -------- ------- -----
f(2^6χ) f(2^5χ) f(2^4χ) f(x)
Κάθε όρος τείνει στο ένα από υπόθεση έτσι και το lim f(100χ)/f(x) =1
Νομίζω ότι μπορεί να είναι έτσι
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος



Αν ισχύει,
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
chris_90
Διάσημο μέλος


και επειδη
τοτε και
και να "φραξουμε" την
Βασικα παιζει και να λεω βλακειες (το πιθανοτερο).

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
chris_90
Διάσημο μέλος


Δεν την βρηκα... αφου λες οτι το οριο ειναι 2.Με κριτήριο παρεμβολής παίζεις. To ζητούμενο όριο βγαίνει ίσο με το 2. Δεν είναι όμως τόσο απλό. Χρειάζεται λίγη σκέψη. Είναι δύσκολη. Την πρώτη ανισότητα την βρήκες.

Μηπως παιζει τιποτα και με παραγωγο; :what:Αλλα δε λεει οτι η f(x) ειναι παραγωγισιμη...
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος


Δεν την βρηκα... αφου λες οτι το οριο ειναι 2.
Μηπως παιζει τιποτα και με παραγωγο; :what:
Θεώρησε και x θετικά μιας και το x τείνει στο συν άπειρο και, έχεις την πρώτη ανισότητα. Το κριτήριο παρεμβολής το χρησιμοποιείς βοηθητικά. Μετά, μένει ένα ακόμα βήμα για να το υπολογίσεις το ζητούμενο όριο, όπου χρησιμοποιείς το όριο που υπολόγισες με το κριτήριο παρεμβολής.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
chris_90
Διάσημο μέλος




Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος


Απλά είναι ωραίες γιατί σε βάζουν στο τρυπάκι να το ψάξεις

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
sabbath
Νεοφερμένος


Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
DimiMoli
Νεοφερμένος


Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kvgreco
Εκκολαπτόμενο μέλος


(f(x)/x)[(f(x)/x)^2 + 1/(x^2)]=8 ή
y*[y^2 + 1/(x^2)]=8
limy*lim[y^2 + 1/(x^2)]=8 , x--->+άπειρο
(limy)^3=8
limy=2
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
chris_90
Διάσημο μέλος



Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
chris_90
Διάσημο μέλος


Οταν μπορεσεις, βαζεις τη λυση σου; Γιατι κι εγω το πρωτο που σκεφτηκα ηταν το ΚΠ και θελω να δω που κολλησα, τι δεν σκεφτηκα να κανω...Με κριτήριο παρεμβολής το χα λύσει Chris.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος


Άρα, για
Οπότε,
Μετά έχει ακόμα ένα βήμα. Διαιρείς την αρχική σχέση με
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
chris_90
Διάσημο μέλος


Ελεος! Ειχα φτασει σ' αυτη την ανισωση και δεν μπορουσα μετα να παω στηνπαίρνουμε καιή
.

Ειχα βρει το
Ωραιες ασκησεις αυτες (φτανω σε σημειο να μου αρεσουν τα μαθηματικα με κατι τετοιες

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 2 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 288 μέλη διάβασαν αυτό το θέμα:
- trifasikodiavasma
- ggl
- ioanna2007
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Dr. Gl. Luminous
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.