kvgreco
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Η συνάρτηση h(x)=f(x)-g(x) είναι συνεχής.
Αν δεν είναι σταθερή, τότε το σύνολο τιμών της θα είναι ένα κλειστό διάστημα σύμφωνα με τα θεωρήματα της συνέχειας, π.χ [λ,μ] όπου λ>0 αφού f-g > 0 και θα ισχύει ότι h(x) >= λ,
δηλαδή f(x) >= λ+g(x) γιά κάθε x τού [α,β].
Αν η h(x)=λ>0 γιά κάθε x τού [α,β], τότε f(x)-g(x)=λ, δηλαδή f(x)=λ + g(x).
Mε ταλαιπώρησε λίγο έτσι που την είχατε διατυπώσει αρχικά γιατί δεν ήξερα τι έπαιζε.Είναι και η απειρία βλέπετε.
Αλλά δοκίμασα τις συναρτήσεις f(x)=(e^x)+1 και την g(x)=1 καί δεν έβρισκα λ ούτε με...σφαίρες γιά κάθε x που ανήκει στο R.Λέω κάτι δεν πάει καλά.
Λύστε μας όμως κύριε riemann την άσκηση πού βάλατε εδώ: https://ischool.e-steki.gr/showthread.php?t=42166
συγκεκριμένα το πρώτο μόνο ερώτημα γιατί τόσο καιρό..ξύνισε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
riemann80
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
οσο για την αλλη δεν εχω προλαβει να την λυσω ακομα.την εβαλα γιατι μου αρεσε η διατυπωση.φανταζομαι πως θα εχει μια ωραια λυση.την ελυσες?
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kvgreco
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αν καταφέρω να αποδείξω ότι δεν μπορεί γιά κανένα x να ισχύει f(x) > x η άσκηση έχει λυθεί, γιατί στη περίπτωση που δεχτώ ότι υπάρχει x ώστε f(x)< x οδηγούμαι σε άτοπο.
Έχω αποδείξει βέβαια πριν ότι η συνάρτηση είναι γνησίως αύξουσα.
Αλλά η άτιμη η περίπτωση πού με κόλλησε δεν ξεπερνιέται με τίποτα.
Πάω με διαγράμματα από δώ από κεί καί το βλέπω ότι έτσι είναι, αλλά αναλυτικά δεν μπορώ να το τεκμηριώσω.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
riemann80
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
riemann80
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
η ασκηση προερχεται απο το βιβλιο "ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ I' του θ.ρασσια καθηγητη του εμπ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Semfer
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
f(x)=f(0)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Πολύ χαρούμενος :D :D](https://www.e-steki.gr/images/smilies/biggrin.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
riemann80
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
ναι δεν ειναι δυσκολη αλλα χρειαζεται φαντασια.τα βιβλια του ρασσια ειναι πολυ καλα με εξυπνες ασκησεις
Νομίζω όμως, ότι ακόμα και όσοι φτάσουν στο προτελευταίο βήμα της λύσης της (εννοώ από τα παιδιά της Γ' λυκείου), θα δυσκολευτούν λίγο στο τελευταίο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ilias777
Νεοφερμένος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
(Θ.Bolzano)
Αν η F συνεχείς στο [1,2] και F(1)=F(2) τότε : Να δείξεις ότι υπάρχει ένα τουλάχιστον ξe[1,2) ώστε F(ξ)=F(ξ+1/2).
Κατά τη γνώμη μου καλή άσκηση!
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
ΥΓ2. Παρατηρώ, ότι υπάρχουν πολλά σκόρπια θέματα με ασκήσεις. Γιατί να μη φτιάξουμε 2-3 θέματα με ανάλογο τίτλο-που θα προσδιορίζουν κάθε ένα από τα κεφάλαια της διδακτέας ύλης του σχολικού βιβλίου-όπου, θα συγκεντρώνουμε όλες τις ανάλογες ασκήσεις; Έτσι, και τα παιδιά που ενδιαφέρονται να τις λύσουν δε θα ψάχνουν από δω κι από ΄κει σε κάθε νέο θέμα που ανοίγει και, δε θα επικρατεί αυτό το χάος.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
manos66
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Semfer
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
menenick
Νεοφερμένος
kvgreco
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Στο διάατημα αυτό η συνάρτηση θα είναι σταθερή γιατί αν υπήρχε π.χ υποδιάστημα τού παραπάνω όπου η συνάρτηση θα ήταν γνησίως αύξουσα τότε θα έπρεπε να ισχύει f(x)<f(2x) αφού x<2x
που όμως δεν ισχύει.Ανάλογα αποδεικνύουμε ότι δεν υπάρχει τμήμα της συνάρτησης όπου να είναι γνησίως φθίνουσα.Άρα θα είναι σταθερή στο [0,+άπειρο) αφού είναι συνεχής και θα έχει τον τύπο f(x)=k
Όμοια στο διάστημα (-άπειρο,0) δείχνουμε ότι θα έχει τύπο f(x)=λ.
Επειδή η συνάρτηση είναι συνεχής παντού άρα και στο μηδέν θα είναι limf(x) όταν x-->0- ίσο με limf(x) όταν x-->0+ ίσο με f(0).
Θα πρέπει δηλαδή στο μηδέν να <<κλειδώνει>> η γραφική παράσταση σε μία τιμή γιά όλα τα x.
Έτσι θα είναι κ=λ=f(0). Οπότε τελικά f(x)=f(0) γιά κάθε x που ανήκει στο R.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
who
Πολύ δραστήριο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
![Γλώσσα :P :P](https://www.e-steki.gr/images/smilies/tongue.gif)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kvgreco
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
riemann80
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Αν θεωρήσουμε το διάστημα [0,+άπειρο)
Στο διάατημα αυτό η συνάρτηση θα είναι σταθερή γιατί αν υπήρχε π.χ υποδιάστημα τού παραπάνω όπου η συνάρτηση θα ήταν γνησίως αύξουσα τότε θα έπρεπε να ισχύει f(x)<f(2x) αφού x<2x
που όμως δεν ισχύει.Ανάλογα αποδεικνύουμε ότι δεν υπάρχει τμήμα της συνάρτησης όπου να είναι γνησίως φθίνουσα.Άρα θα είναι σταθερή στο [0,+άπειρο) αφού είναι συνεχής και θα έχει τον τύπο f(x)=k
Όμοια στο διάστημα (-άπειρο,0) δείχνουμε ότι θα έχει τύπο f(x)=λ.
Επειδή η συνάρτηση είναι συνεχής παντού άρα και στο μηδέν θα είναι limf(x) όταν x-->0- ίσο με limf(x) όταν x-->0+ ίσο με f(0).
Θα πρέπει δηλαδή στο μηδέν να <<κλειδώνει>> η γραφική παράσταση σε μία τιμή γιά όλα τα x.
Έτσι θα είναι κ=λ=f(0). Οπότε τελικά f(x)=f(0) γιά κάθε x που ανήκει στο R.
γιατι υποθετεις οτι η συνάρτηση ειναι γνησιως μονοτονη ομως? απο που βγαινει αυτο?
θα επρεπε να ειναι 1-1 γιαυτο στα αντιστιχα διαστηματα που θεωρεις!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
george_k214
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Μπράβο πάντως για την προσπάθεια και μόνο!Εγώ δεν μπόρεσα να σκεφτώ κάτι σε αυτή την άσκηση!Ας μας πεί ωστόσο ένας μαθηματικός αν ισχύει η λύση σου...
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
kvgreco
Εκκολαπτόμενο μέλος
![Ημερομηνία Ημερομηνία](images/general/calendar.png)
![Ώρα Ώρα](images/general/clock.png)
Τι μπορεί να κάνει (εποπτικά) μιά συνεχής γραμμή?Να ανεβαίνει να κατεβαίνει να είναι οριζόντια ή συνδυασμός τους.Υπάρχει κάτι άλλο?γιατι υποθετεις οτι η συνάρτηση ειναι γνησιως μονοτονη ομως? απο που βγαινει αυτο?
θα επρεπε να ειναι 1-1 γιαυτο στα αντιστιχα διαστηματα που θεωρεις!!
Εξ άλλου πάλι γι αυτά μιλάγαμε τις προάλλες αν θυμάσαι.Ότι αφού είναι ορισμένη σε διάστημα δεν υπάρχει κίνδυνος.Αν ήταν ένωση διαστημάτων θα είχε πρόβλημα η λύση.
@george
Δεν είπα γιά γνήσια αύξουσα.Αλλά πήγα να αποκλείσω το γνησίως μονότονη γενικά.Όσο γιά μαθηματικό που λες ο riemann μαθηματικός είναι (κάνω λάθος?).Στις πανελλήνιες δεν ξέρω πώς θα δέχονταν τη λύση πάντως εμένα με καλύπτει.Ας τη λύσουν οι μαθηματικοί εδώ με το "σωστό" τρόπο λοιπόν να τη δούμε κι εμείς, αν καί οι μαθηματικοί λένε ότι τούς αρέσει πάντα όχι η λύση των πολλών αλλά η διαφορετική.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 2 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 287 μέλη διάβασαν αυτό το θέμα:
- ggl
- ioanna2007
- Hased Babis
- thepigod762
- akis_95
- Mariosm.
- Maynard
- infection54
- Jesse_
- topg
- eukleidhs1821
- bill09876
- Debugging_Demon
- mali
- Joji
- Ness
- Helen06
- Scandal
- synthnightingale
- arko
- BillyTheKid
- Magigi
- Paragontas7000
- Unboxholics
- just some guy
- george777
- Wonderkid
- IceCream05
- Abiogenesis
- GeorgePap2003
- katia.m
- giannhs2001
- paul
- Praxis
- Apocalypse
- shezza94
- desp1naa
- rempelos42
- Sherlockina
- oups
- Dimgeb
- spring day
- KingOfPop
- mpapa
- Chrisa
- Physicsstudent
- tsiobieman
- P.Dam.
- persi
- Euge.loukia
- theodoraooo
- PanosBat
- kost28
- mikriarchitectonissa
- BILL KEXA
- Drglitterstar
- Eleftheria2
- Athens2002
- bruh_234
- Miranda32
- SlimShady
- kallikd
- nucomer
- alpha.kappa
- Eeeee
- J.Cameron
- Marple
- Kitana
- F1L1PAS
- sophiaa
- VFD59
- papa2g
- το κοριτσι του μαη
- srg96
- Hopeful22
- Φινεύς
- Phys39
- Anta2004
- fairyelly
- Pharmacist01
- jYanniss
- Panagiotis849
- Kokro
- augustine
- Nikoletaant
- Mashiro@Iberan
- margik
- Mammy Nun
- Pastramis
- Σωτηρία
- Appolon
- panosveki
- Nickt23
- igeorgeoikonomo
- Steliosgkougkou
- QWERTY23
- Ameliak
- aladdin
- nimbus
- Φωτεινη Τζα.
- marian
- Georgekk
- xrisamikol
- the purge
- Theodora03
- Machris
- s93060
- Nikitas18
- Stif6
- stav.mdp
- damn
- aekaras 21
- Anthropaki
- Angelos12345
- ioannam
- Μάρκος Βασίλης
- skyway
- Nick2325
- Nala
- Manolo165
- Ryuzaki
- T C
- Devilshjoker
- El_
- George9989
- TonyMontanaEse
- globglogabgalab
- constansn
- barkos
- katerinavld
- fenia
- An_uknown_world
- Jimmis18
- maria2001
- KingPoul
- Xara
- thecrazycretan
- abcdefg12345
- Κλημεντίνη
- ale
- panagiotis G
- mechaniceng
- Giii
- calliope
- Tequila
- natalix
- Cortes
- Alexecon1991
- pepsoula
- Mariaathens
- Lia 2006
- 1205
- παιδι για κλαματα
- Alexandros36k
- alexd99
- chembam
- Specon
- Dr House
- panagiotis23
- Johnman97
- rhymeasylum
- Αννα Τσιτα
- KaterinaL
- Libertus
- LeoDel
- iminspain
- den antexw allh apotyxia
- Λαμπρινηη
- Mendel2003
- Ijt
- drosos
- Κορώνα
- JohnGreek
- Αρχηγος_β3
- alexandra_
- ΘανάσοςG4
- Dimitris9
- Birtjan
- george7cr7
- NickT
- Bgpanos
- JKTHEMAN
- nicole1982
- χημεια4λαιφ
- Stroka
- Kostakis45
- charmander
- leo41
- EiriniS20
- Αριάνα123
- MarilynSt
- iManosX13
- Nefh_
- Viedo
- Βλα
- suaimhneas
- george pol
- kristinbacktoschool
- fearless
- Rene2004
- Steffie88
- Slytherin
- jimnikol21
- Unseen skygge
- cel123
- jul25
- Thanos_D
- Ireneeneri
- tasost
- Mukumbura
- xxxtolis
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.