Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Τυφών
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
panosedessa
Δραστήριο μέλος
απλως για καποιο λογο δεν ειναι διαθεσιμη η σελιδα ισως σε λιγο καιρο να ειναι ετοιμη παντως ψαξε μαθηματικος περιηγητης η τελευταια επαναληψη
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Resistance
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Έρεβος
Νεοφερμένος
Αρχικά αντικαθιστούμε την f(x) στο όριο με τον τύπο της.
Παρατηρούμε ότι:
και
Σημείωση: Για το πρώτο όριο ισχύει ότι
και για αυτόν το λόγο το όριο ισούτε με +άπειρο.
Αφού λοιπόν τα επιμέρους όρια υπάρχουν, θα υπάρχει και το γινόμενό τους, δηλαδή:
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Εστω συναρτηση f συνεχης στο διαστημα [0,3] τετοια, ωστε:
f(0)=5, f(2)=1, f(3)=5.
α) Να αποδείξετε ότι υπαρχει ξε(0,3) τετοιος, ωστε f(ξ)=2 [Αυτο το ερωτημα το εκανα με bolzano στα διαστηματα (0,2) και (2,3) αφου εθεσα οτι g(x)=f(x)-2]
β) Να αποδείξετε ότι υπαρχουν ξ1,ξ2ε(0,3) τέτοια, ωστε f(ξ1)+f(ξ2)=7
Για το β δεν βγαινει με τιποτα :/
Βοηθεια πλιζ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 190013
Επισκέπτης
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Το εκανα αλλα δεν βγαινει!! Καλα δεν πειραζει ευχαριστω..Μπορείς να κάνεις Μπολζάνο για f(ξ1)=3 και f(ξ2)=4 οπότε βγαίνει, αλλά πρέπει να υπάρχει καλύτερη λύση...
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Guest 190013
Επισκέπτης
5-4=1 1-4=-3 για το ξ2
5-3=2 1-3=-2 για το ξ1
Ακριβώς όπως έκανες f(ξ)=2
Σημείωση: Το μήνυμα αυτό γράφτηκε 8 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Τυφών
Εκκολαπτόμενο μέλος
f συνεχής και γνησίως φθίνουσα στο R. Να αποδείξετε ότι υπάρχει μοναδικό ξεR τέτοιο ώστε f(ξ)=ξ.
Σκέφτηκα ΘΜΕΤ για την f στο τυχαίο [α,β] και αφού είναι και γνησίως φθίνουσα: f(β)<f(x)<f(α) ( και ίσον) ή f(β)<f(ξ)<f(α) και όπου f(ξ) βάζω ξ
Και μετά ΘΕΤ και βγαίνει και αφού f γν. φθίνουσα είναι μοναδικό. Αλλά δεν ξέρω αν μπορώ να αντικαταστήσω όπου f(ξ) το ξ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Μπορεις να θεσεις συναρτηση g(x)=f(x)-xΜια βοήθεια εδώ αν γίνεται:
f συνεχής και γνησίως φθίνουσα στο R. Να αποδείξετε ότι υπάρχει μοναδικό ξεR τέτοιο ώστε f(ξ)=ξ.
Σκέφτηκα ΘΜΕΤ για την f στο τυχαίο [α,β] και αφού είναι και γνησίως φθίνουσα: f(β)<f(x)<f(α) ( και ίσον) ή f(β)<f(ξ)<f(α) και όπου f(ξ) βάζω ξ
Και μετά ΘΕΤ και βγαίνει και αφού f γν. φθίνουσα είναι μοναδικό. Αλλά δεν ξέρω αν μπορώ να αντικαταστήσω όπου f(ξ) το ξ.
Επειτα αφου f γνησιως φθινουσα τοτε lim(χ→-∞)f(x)=+∞ ενώ lim(χ→+∞)f(x)=-∞ αφού η f πεφτει συνέχεια
Οποτε lim(χ→-∞) g(x)=+∞ αρα υπαρχει χ1<0 τετοιο ωστε g(x1)>0
και lim(χ→+∞)g(x)=-∞ αρα υπαρχει χ2>0 τετοιο ωστε g(x2)<0
Oποτε g(x1)*g(x2)<0
Απο το θεωρημα bolzano υπαρχει ξε[χ1,χ2]=R τετοιο ωστε g(ξ)=0---> f(ξ)-ξ=0---->f(ξ)=ξ και αφου η f είναι γνησιως φθινουσα τοτε είναι μοναδικο το ξ
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
xristarac
Νεοφερμένος
Λαθος μου...αποδεικνυω μονο την μαναδικοτητα
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Τυφών
Εκκολαπτόμενο μέλος
Μπορεις να θεσεις συναρτηση g(x)=f(x)-x
Επειτα αφου f γνησιως φθινουσα τοτε lim(χ→-∞)f(x)=+∞ ενώ lim(χ→+∞)f(x)=-∞ αφού η f πεφτει συνέχεια
Οποτε lim(χ→-∞) g(x)=+∞ αρα υπαρχει χ1<0 τετοιο ωστε g(x1)>0
και lim(χ→+∞)g(x)=-∞ αρα υπαρχει χ2>0 τετοιο ωστε g(x2)<0
Oποτε g(x1)*g(x2)<0
Απο το θεωρημα bolzano υπαρχει ξε[χ1,χ2]=R τετοιο ωστε g(ξ)=0---> f(ξ)-ξ=0---->f(ξ)=ξ και αφου η f είναι γνησιως φθινουσα τοτε είναι μοναδικο το ξ
Το ότι η f είναι γν. φθίνουσα στο R δεν σημαίνει οτι αυτά τα όρια είναι τόσο. π.χ. η α^x με 0<α<1 είναι γν. φθίνουσα στο R αλλά
lim(x->+∞) α^x=0
Για την μοναδικότητα είναι εύκολο αφού η f είναι γν. μονότονη.
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Mathitaras13
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
AlexTselikas
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
methexys
Τιμώμενο Μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
AlexTselikas
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Ι) f(0)=1
2) f'(0)=1
3) f'(x)+f''(x)=e^x + ριζα(x^2+1).
Δεν μπορω να βρω την αρχικη της ριζα(χ^2+1)
HELP
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Αγγελος Κοκ
Τιμώμενο Μέλος
για γ λυκειου ειναι;ΝΑ ΑΠΟΔΕΙΞΕΤΕ ΟΤΙ ΥΠΑΡΧΕΙ ΜΟΝΑΔΙΚΗ ΣΥΝΑΡΤΗΣΗ f Η ΟΠΟΙΑ ΕΙΝΑΙ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗ ΣΤΟ R ΚΑΙ ΕΧΕΙ ΤΙΣ ΕΞΗΣ ΙΔΙΟΤΗΤΕΣ:
Ι) f(0)=1
2) f'(0)=1
3) f'(x)+f''(x)=e^x + ριζα(x^2+1).
Δεν μπορω να βρω την αρχικη της ριζα(χ^2+1)
HELP
γιατι με υλη γ λυκειου δεν προκειται να το λυσεις ποτε εκτος κι αν εισαι τυχερος και με διαφορες δοκιμες καταληξεις σε αυτην...
Σημείωση: Το μήνυμα αυτό γράφτηκε 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 10 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 224 μέλη διάβασαν αυτό το θέμα:
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.