Ria_Maimou
Νεοφερμένος
Η ΕΛΕΥΘΕΡΙΑ αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι 30 ετών, Μαθητής Γ' λυκείου και μας γράφει από Αθήνα (Αττική). Έχει γράψει 31 μηνύματα.

10-07-11

22:15
Η εξίσωση z+|z+1|+i=0 βγαίνει αδύνατη?
Κάνω έστω z=x+yi:
x+yi+|x+yi+1|+i=0
x+ ρίζα(x+1)^2+y^2 +(y+1)i=0
πρέπει:
x+ ρίζα(x+1)^2+y^2=0 [1]
και
y+1=0 ---> y=-1
Η [1] γίνεται:
ρίζα(x+1)^2+1 +x=0 ---> ρίζαx^2+2x+2 +x=0
μετά πρέπει να πάω το x από την άλλη ώστε να υψώσω στο τετράγωνο και τα δύο μέλη και να φύγει η ρίζα. Όμως αν πάω το x από την άλλη γίνεται αρνητικό, πράγμα αδύνατο αφού η ρίζα πρέπει να είναι ίση ή μεγαλύτερη του μηδενός.
Είναι σωστή η λύση μου ή κάνω κάποιο λάθος??
Μια απλή επιβεβαίωση θέλω...

Κάνω έστω z=x+yi:
x+yi+|x+yi+1|+i=0
x+ ρίζα(x+1)^2+y^2 +(y+1)i=0
πρέπει:
x+ ρίζα(x+1)^2+y^2=0 [1]
και
y+1=0 ---> y=-1
Η [1] γίνεται:
ρίζα(x+1)^2+1 +x=0 ---> ρίζαx^2+2x+2 +x=0
μετά πρέπει να πάω το x από την άλλη ώστε να υψώσω στο τετράγωνο και τα δύο μέλη και να φύγει η ρίζα. Όμως αν πάω το x από την άλλη γίνεται αρνητικό, πράγμα αδύνατο αφού η ρίζα πρέπει να είναι ίση ή μεγαλύτερη του μηδενός.
Είναι σωστή η λύση μου ή κάνω κάποιο λάθος??
Μια απλή επιβεβαίωση θέλω...


Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.