azzuro
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
nikolas17
Πολύ δραστήριο μέλος
πρεπει να πεις f συνεχης στο [α,β]. παραγωγισιμη στο (α,β) , f(a) = f(b) αρα η εφ ικανοποιει τις υποθεσεις του θεωρηματος Ρολ
ΝΑΙ! Εσυ τι λες να γράψεις, ΘR άρα f'(xo)=0?
Συμβουλή : ΟΣΟ πιο αναλυτικά μπορείς τόσο το καλύτερο!!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
azzuro
Νεοφερμένος
Το προβλημαδεν ειναι οτι βαριεμαι, αλλα το οτι θα παρει πολυ χρονο... τουλαχιστον αν βαλεις αστερακια και εξηγησεις συντομογραφιες πιανει;
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
_ann_
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
statakos
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
ηθελα να ρωτησω αν υπαρχουν η εχουν αποσυρθει κ που θα βρω βοηθηματα μαθηματικων κατευθ.γ λυκειου που εχουν και τους πινακες και τριγωνομετρικη μορφη μιγαδικων μεσα..
Υπάρχουν.
1) Εκδόσεις Σαββάλα: Στεργίου-Νάκης. 1ο τεύχος, μπλε εξώφυλλο. Επανακυκλοφόρησε το 2001 βγάζοντας έξω τους πίνακες. Ίσως να βρεις κάποιο αντίτυπο από τα παλιά.
2) Εκδόσεις Σαββάλα: Τζιρώνης-Τζουβάρας. 4 τεύχη. Νομίζω ότιοι πίνακες είναι στο 1ο τεύχος αλλά δεν είμαι απόλυτα σίγουρος
Ψάξε για βιβλία υπο απόσυρση μαθηματικών 1ης και 4ης δέσμης.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
_ann_
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
bladen
Νεοφερμένος
Να μελετηθεί η f(x)=lnx ως προς την μονοτονία και τα ακρότατα της.
Ευχαριστώ εκ των προτέρων για όποια βοήθεια προκύψει.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
μηδενιζεις την φ'(χ)=0+=>χ(2lnx+1)=0=>lnx=-1/2=>x=e^(-1/2)
κανεις πινακακι για την φ' ποπυ εχει μια ριζα και εκει παρουσιαζει ακροτατο,θα δεις τι ειναι συμφωνα με το πως θα σου ββγει,δηλ αν βγει γν αυξουσα,γν φθινοουσα τοτε ειναι μεγιστο
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Αν μία συνάρτηση f είναι ορισμένη σε σύνολο της μορφής τότε υπάρχει το πλευρικό όριο .
Σωστό ή Λάθος;
Αν μία συνάρτηση f είναι ορισμένη σε σύνολο της μορφής τότε υπάρχει το πλευρικό όριο .
Σωστό ή Λάθος;
Αν μία συνάρτηση f είναι ορισμένη σε σύνολο της μορφής τότε υπάρχουν τα πλευρικά όρια
και .
Σωστό ή Λάθος;
Αν μία συνάρτηση f είναι ορισμένη σε σύνολο της μορφής τότε υπάρχει το όριο .
Σωστό ή Λάθος;
Αν μία συνάρτηση f είναι ορισμένη σε σύνολο της μορφής τότε υπάρχει το όριο .
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
m3Lt3D
Πολύ δραστήριο μέλος
αντιπαραδειγμα: f(x)=cos(1/x) με xo=0.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
m3Lt3D
Πολύ δραστήριο μέλος
Αποδειξη;Δεν υπάρχει γιατί αν μία συνάρτηση είναι παραγωγίσιμη και κοίλη στο R τότε υπάρχει τουλάχιστον ένα ξ στο R τέτοιο ώστε f(ξ)<0.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Άρα για κάθε και για κάθε όπου
Θεωρώ την συνάρτηση
Η g είναι συνεχής και παραγωγίσιμη στο R αφού είναι και η f και ισχύει για κάθε
Για είναι και για είναι
Η g είναι συνεχής στο , παραγωγίσιμη στο και ισχύει για κάθε . Συνεπώς η g είναι γνησίως αύξουσα στο
Η g είναι συνεχής στο , παραγωγίσιμη στο και ισχύει για κάθε . Συνεπώς η g είναι γνησίως φθίνουσα στο .
Άρα η g παρουσιάζει ολικό μέγιστο στο
για κάθε , που σημαίνει ότι η γραφική παράσταση της f βρίσκεται κάτω από την ευθεία της εφαπτομένης της στο σημείο με μοναδικό κοινό σημείο το σημείο επαφής.
Αν υπάρχει ένα τέτοιο ώστε τότε αυτό είναι μοναδικό καθώς η f' είναι γνησίως φθίνουσα, άρα και 1-1. Τότε
Δηλαδή σε αυτήν την περίπτωση ισχύει για και για
Άρα στην αυτή περίπτωση υπάρχουν με τέτοια ώστε και
Αν για κάθε , τότε δεν είναι δυνατόν να υπάρχουν με τέτοια ώστε γιατί τότε σύμφωνα με το θεώρημα Darboux θα υπήρχε τουλάχιστον ένα τέτοιο ώστε
(είτε είναι συνεχής είτε δεν είναι συνεχής η πρώτη παράγωγος της f στο ισχύει αυτό. Το θεώρημα Darboux δεν το διδάσκεστε στο λύκειο)
Άρα σε αυτήν την περίπτωση η πρώτη παράγωγος f' της f διατηρεί σταθερό πρόσημο στο R που σημαίνει ότι η f είναι γνησίως μονότονη στο R. Δηλαδή ισχύει είτε f'(x)>0 για κάθε είτε f'(x)<0 για κάθε
Σε κάθε περίπτωση, υπάρχει τέτοιο ώστε , οπότε είτε είτε
Η εφαπτομένη της γαρφικής παράστασης της συνάρτησης f στο σημείο " /> παριστάνεται από την εξίσωση y=h(x) όπου h συνάρτηση με τύπο
Αν τότε έχουμε
όπου
Συνεπώς υπάρχει δ>0 τέτοιο ώστε για κάθε
Συνεπώς επειδή για κάθε και για κάθε τότε
για κάθε
Αν τότε έχουμε
όπου
Συνεπώς υπάρχει δ>0 τέτοιο ώστε για κάθε
Συνεπώς επειδή για κάθε και για κάθε τότε
για κάθε
Άρα σε κάθε περίπτωση υπάρχει διάστημα Δ στο οποίο ισχύει f(x)<0 για κάθε
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
Αν f συνεχής στο (α,β), παραγωγίσιμη στο και υπάρχει το όριο και δεν είναι πεπερασμένο τότε υπάρχει το όριο και ισχύει .
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
m3Lt3D
Πολύ δραστήριο μέλος
Αυτη η υποθεση υπαρχει σε ασκηση σε φροντιστηριακο βιβλιο.Αθλιο ε;
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Civilara
Περιβόητο μέλος
ωραιος. μερικα τυπογραφικα λαθακια που ειναι ασημαντα.
Αυτη η υποθεση υπαρχει σε ασκηση σε φροντιστηριακο βιβλιο.Αθλιο ε;
Είναι όντως άθλιο. Βέβαια δεν μπορεί να πέσει ακριβώς έτσι στις εξετάσεις αν πέσει. Είτε θα δίνουν ότι η f είναι κυρτή και 2 φορές παραγωγίσιμη στο R με f''(x)>0 είτε ότι η f είναι κυρτή και έχει συνεχή παράγωγο στο R. Αυτό γιατί δεν διδάσκεται στο λύκειο το θεώρημα του Darboux. Ωστόσο ισχύει πάντα ακόμη και αν η f' δεν είναι συνεχής στο R.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
paganini666
Δραστήριο μέλος
ωστε
1 Να επαληθευσετε οτι ο
2 Να βρειτε τους αλλους μιγαδικους που ειναι επισης λυσεις του προβληματος.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 13 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 224 μέλη διάβασαν αυτό το θέμα:
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.