________________________________________Δίνεται ο μιγαδικός z, για τον οποίο ισχύει |z – 1 – i| = 3.Nα αποδείξετε ότι 2 ≤ |z + 2 + 3i| ≤ 8.________________________________________Λύση:Παρατηρούμε ότι A = |z + 2 + 3i| = |(z – 1 – i) + (3 + 4i)|, τότεάρα αρκεί, να αποδείξουμε 2 ≤ Α ≤ 8.Από την τριγωνική ανίσωση||z1| – |z2|| ≤ |z1 + z2| ≤ |z1| + |z2|. για z1 = z – 1 – i και z2 = 3 + 4i,έχουμε||z – 1 – i| – |3 + 4i|| ≤ |(z – 1 – i) + (3 + 4i)| ≤ |z – 1 – i| + |3 + 4i|βλέπε ότι |3 + 4i| = 5, άρα |3 – 5| ≤ A ≤ 3 + 5 |– 2| ≤ A ≤ 8 2 ≤ A ≤ 8 Άρα 2 ≤ |z + 2 + 3i| ≤ 8.Στο βιβλίο μου ¨Συλλογή Επαναληπτικών Θεμάτων στα Μαθηματικά Κατεύθυνσης" θα βρείτε περισσότερες Ασκήσεις με Ανισώσεις και Μιγαδικούς.Το παραπάνω Θέμα έπεσε στο 1ο Γενικό Λύκειο Θεσ/νίκης στο Διαγώνισμα στις 5/10/2008.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.