Γιώργος
Τιμώμενο Μέλος
Συγγνώμη που θα απογοητεύσω τον HearTEyeD, αλλά η λύση δεν παίρνει πολλά. Έχει σχέση μ' αυτό που 'πε ο Στέλιος πιο πάνω.... αλλά η άσκηση δεν είναι ελλειπής, βγαίνει!Καταρχήν η πρώτη είναι ελλειπής. Δε λέει κάν ότι η g παραγωγίζεται σε διάστημα.
Όποιος το βρει παίρνει καραμελίτσα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Giannis17
Νεοφερμένος
Να και αλλη μια
Να αποδειξετε οτι για καθε
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Γιώργος
Τιμώμενο Μέλος
:no1:Ετσι βγαινει.Την ασκηση σου δεν εχω καταφερει να την λυσω ακομα.Μεχρι που χρειαζεται να εχεις κανει για να την λυσεις?Γιατι ειμαι στις συνεπειες του Θ.Μ.Τ τωρα.
Να και αλλη μια
Να αποδειξετε οτι για καθε
νιανιανιανια
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
nick_source
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Γιώργος
Τιμώμενο Μέλος
- Η είναι παραγωγίσιμη στο 0 ως απόγονος του μαρκησίου της Γαλλίας.
- παραγωγίσιμη στο 1.
Ξαναδιαβάστε το θεώρημα!!!!!
Και λοιπά.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Cosdel
Νεοφερμένος
Εξεταζουμε την παραγωγο στα ανοιχτα διαστηματα χωρις να περνουμε και το 0, αφου:
Αν μια συνάρτηση f είναι συνεχής σʼένα διάστημα Δ , τότε:
Αν f ΄(x)> 0 για κάθε x εσωτερικό του Δ , η f είναι γνησίως αύξουσα στο Δ(σε ολο το Δ).
Αν f ΄(x)< 0 για κάθε x εσωτερικό του Δ , η f είναι γνησίως φθίνουσα στο Δ(σε ολο το Δ).
Αρα προκυπτει στο παραδειγμα μας:
f γν. αυξουσα στο (-οο,0]
f γν. αυξουσα στο [0,+οο)
μετα επειδη οντως η f ειναι συνεχης στο 0 μπορουμε να πουμε f γν.αυξουσα στο R:no1:.
------------------------------------------------------------------------
Κατι τετοιο μπορει να ειναι πολυ σημαντικο σε θεματα συνολου τιμων και ακριβη αριθμο ριζων.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Cosdel
Νεοφερμένος
Δείτε και μία ακόμη
Αφιερωμένη στον Γιώργο
Δίνεται η παραγωγίσιμη συνάρτηση στο διάστημα με και και
Αν , να αποδειχθεί ότι υπάρχει , τέτοιο ώστε .
Μηπως τα a,b ανηκουν στο D, και επισης η f' ειναι συνεχης ή η f ειναι 2 φορες παραγωγισιμη στο D;;;;;
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
arisdim
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vamou90
Εκκολαπτόμενο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Αλλά προσοχή : το ότι είναι γνησίως μονότονη δεν μας εξασφαλίζει ότι θα 'χει σίγουρα ρίζα (για την παράγωγο μιλάω) , γι' αυτό και η παράγουσα δεν έχει σίγουρα 2 ρίζες, αλλά το πολύ.
Στέλιος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Γιώργος
Τιμώμενο Μέλος
Το να δείξεις ότι μία συνάρτηση είναι γνησίως μονότονη είναι ικανή συνθήκη για να έχει όχι παραπάνω από μία ρίζες.
Τι εννοώ. Μία συνάρτηση μπορεί να έχει μοναδική ρίζα χωρίς να είναι γνησίως μονότονη. Παράδειγμα η . Μπορεί με άλλους τρόπους να δείξεις ότι δεν έχει άλλες ρίζες.
Επίσης μία συνάρτηση μπορεί να είναι γνησίως μονότονη και να μην έχει ρίζες (όπως έδειξα απάνω).
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vamou90
Εκκολαπτόμενο μέλος
Η άσκηση είναι πάρα πολύ δύσκολη και αμα δεν έχεις ξαναδεί παρόμοια είναι πολύ δύσκολο να την λύσεις γι'αυτο οποιος την εχει δει ας μην πει την λυση για να προσπαθισουν να την λυσουν μονοι τους οι υπόλοιποι
Με το μάτι βλέπω δύο προφανείς ρίζες το 0 και το 1 ... απο κει και πέρα νομίζω φερνεις 7^χ απ τα αριστερα και το 3^χ απ τα δεξιά και διαιρεις με 9-7 και 5-3 αντοίστιχα τα δύο μέλη που έχουν προκύψει....Έτσι δημιουργείς ΘΜΤ θέτεις μετά συνάρτηση f(t)= t^x και βγαίνει εύκολα μετά.... Πάντως είναι πολύ δύσκολη για όποιον δεν την έχει ξαναδεί..
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Μηπως τα a,b ανηκουν στο D, και επισης η f' ειναι συνεχης ή η f ειναι 2 φορες παραγωγισιμη στο D;;;;;
Τα a,b ανήκουν στο D, όντως. Απροσεξία μου !
Κατά τα άλλα όχι... Δε μπορείς να εφαρμόσεις Bolzano, άρα πρέπει να τη βγάλεις αλλιώς
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
M.d
Νεοφερμένος
Marw90
Νεοφερμένος
vamou90
Εκκολαπτόμενο μέλος
Στη δεύτερη θέσε μία συνάρτηση g(x)=f(x)/x και προσπάθησε να διαιρέσεις κατάλληλα την σχέση που σου δίνει
Η τελευταία με δυσκολεύει και μένα λίγο αλλά δεν έχω και πολύ χρόνο για να την δω,.....σίγουρα θα σε βοηθήσει κάποιος στα επόμενα...
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vera_mak
Νεοφερμένος
το λοιπον το limg(x)/x οταν το χ τεινει στο μηδεν θα ναι: ξερουμε πως το οριο της f υπαρχει.το ημχ/χ θα φυγει μιας και κανει 1 (βασικη τριγωνομετρικη εφαρμογη). αρα θα μας μεινει το limfof(x) x->0 να υπολογισουμε. (μπορουμε να χωρισουμε το κλασμα γιατι τα ορια υπαρχουν). (δεν ξέρω ομως κατα ποσο στεκουν αυτα που λεω)
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mostel
Πολύ δραστήριο μέλος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
vera_mak
Νεοφερμένος
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 29 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 224 μέλη διάβασαν αυτό το θέμα:
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.