Civilara
Περιβόητο μέλος


να δείξω ότι
. Όποιος μπορεί ας μου δώσει κάποιο tip και αν δεν μπορέσω μετά μου την λύνει.
f(f(x))=x^2-x+1 => f(f(f(x)))=f(x^2-x+1), x ανήκει R (αφού δεν δίνεται κάποιος περιορισμός για το x)
Επίσης αν θέσω y=f(x) τότε f(f(y))=y^2-y+1 => f(f(f(x)))=[f(x)]^2-f(x)+1, x ανήκει R
Από τις 2 τελευταίες σχέσεις προκύπτει ότι [f(x)]^2-f(x)+1=f(x^2-x+1), x ανήκει R
Για x=1 προκύπτει
[f(1)]^2-f(1)+1=f(1^2-1+1) => [f(1)]^2-f(1)+1=f(1) => [f(1)]^2-2f(1)+1=0 => [f(1)-1]^2=0 => f(1)-1=0 => f(1)=1
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Βλα
Πολύ δραστήριο μέλος


να δείξω ότι
. Όποιος μπορεί ας μου δώσει κάποιο tip και αν δεν μπορέσω μετά μου την λύνει.
Αρχικά μπορείς να θέσεις x=f(x) και να αντικαταστήσεις στην αρχική σχέση.
Μετά προσπάθησε να εμφανίσεις το f(1)

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


f(f(x))= x^2 - x + 1 (1)
Hint: Στην (1) όπου χ το 1, f(f(1))=1 (2)
Μετά, στην (1) όπου x το f(1) και έχεις: f(f(f(1))) = f(1) ^2 - f(1) + 1 <=> ( f(f(1)) = 1 από (2) )
f(1) = f(1)^2 - f(1) + 1 <=> f(1)^2 - 2f(1) + 1 = 0 <=> (f(1) - 1)^2 = 0 <=> f(1) = 1
f(f(x))=x^2-x+1 => f(f(f(x)))=f(x^2-x+1), x ανήκει R (αφού δεν δίνεται κάποιος περιορισμός για το x)
Επίσης αν θέσω y=f(x) τότε f(f(y))=y^2-y+1 => f(f(f(x)))=[f(x)]^2-f(x)+1, x ανήκει R
Από τις 2 τελευταίες σχέσεις προκύπτει ότι [f(x)]^2-f(x)+1=f(x^2-x+1), x ανήκει R
Για x=1 προκύπτει
[f(1)]^2-f(1)+1=f(1^2-1+1) => [f(1)]^2-f(1)+1=f(1) => [f(1)]^2-2f(1)+1=0 => [f(1)-1]^2=0 => f(1)-1=0 => f(1)=1
Σας ευχαριστώ και τους δύο!

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


https://imageshack.us/a/img208/4839/eq1.gif
να εξετασετε αν f =g αν δεν ισχυει να βεριτε το υποσυνολο του R ωστε f(x)=g(x)
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος



Uploaded with ImageShack.us
να ορισεται τις συναρτησεις f+g,f-g,f*g,f/g
οποιος εχει ορεξη και χρονο αν μπορει ας με βοηθησει ευχαριστω
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


Δίνονται οι συναρτησεις
![]()
Uploaded with ImageShack.us
να ορισεται τις συναρτησεις f+g,f-g,f*g,f/g
οποιος εχει ορεξη και χρονο αν μπορει ας με βοηθησει ευχαριστω
1. Βρίσκεις τα πεδία ορισμού των συναρτήσεων.
2. Βρίσκεις το πεδίο ορισμού τις πράξεις. Για να ορίζεται η πράξη πρέπει
3. Κάνεις την πράξη.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


να βρεθουν οι τιμες α,βΕR ωστε να ισχυει gof=fog
2.δινεται η συναρτηση f με Π.Ο το διαστημα [0,1]
να βρεθει το Π.Ο των συναρτησεων
α)f(x²)
β)f(χ-4)
γ)f (lnx)
Ζηταω συγγνωμη


Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
antwwwnis
Διάσημο μέλος


1.f(x)=x²-x και g(x)= x²+αx+β
να βρεθουν οι τιμες α,βΕR ωστε να ισχυει gof=fog
2.δινεται η συναρτηση f με Π.Ο το διαστημα [0,1]
να βρεθει το Π.Ο των συναρτησεων
α)f(x²)
β)f(χ-4)
γ)f (lnx)
Ζηταω συγγνωμηαν γινομαι σπαστικος με τις ασκησεις: αλλα επειδη στα μαθηματικα κατ. μπερδευομαι θα ηθελα οποιος με βοηθηση να λυσω αυτες τις ασκησεις να μου εξηγησει αναλυτικα πως και τι κανουμε ευχαριστω
![]()
1.
πότε δύο συναρτήσεις λέγονται ίσες;
Το έχει σαν θεωρία το βιβλίο σου.
Θα βρεις πρώτα τις gof & fog και μετά θα εφαρμόσεις την ισότητα συναρτήσεων. Στην εξίσωση που προκύπτει, λύνεις ως προς α και το βρίσκεις.
2.
Μου αρέσει αυτη η άσκηση.
η f(χ) ορίζεται για χ€[0,1]
Δηλαδή, ότι υπάρχει στη θέση του χ πρέπει να ανήκει στο διάστημα αυτό, σύμφωνα με τον ορισμό της σύνθεσης.
Οπότε, για το β έχουμε:
0<=χ-4<=1
0<=χ-4 και χ-4<=1
χ>=4 και χ<=5
άρα 4<=χ<=5 δηλ χ€[4,5]. Πεδίο ορισμού της f(x-4) είναι το [4,5]
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


1.
πότε δύο συναρτήσεις λέγονται ίσες;
Το έχει σαν θεωρία το βιβλίο σου.
Θα βρεις πρώτα τις gof & fog και μετά θα εφαρμόσεις την ισότητα συναρτήσεων. Στην εξίσωση που προκύπτει, λύνεις ως προς α και το βρίσκεις.
2.
Μου αρέσει αυτη η άσκηση.
η f(χ) ορίζεται για χ€[0,1]
Δηλαδή, ότι υπάρχει στη θέση του χ πρέπει να ανήκει στο διάστημα αυτό, σύμφωνα με τον ορισμό της σύνθεσης.
Οπότε, για το β έχουμε:
0<=χ-4<=1
0<=χ-4 και χ-4<=1
χ>=4 και χ<=5
άρα 4<=χ<=5 δηλ χ€[4,5]. Πεδίο ορισμού της f(x-4) είναι το [4,5]
ευχαριστω
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
mary-blackrose
Εκκολαπτόμενο μέλος


1)Εστω η συναρτηση f : [LATEX]R\rightarrow R[/LATEX]για την οποια ισχυει f(f(x))=x,για καθε χ ε R και η συναρτηση g(x)=x+f(x),για καθε χ ε R που ειναι 1-1.
ι)να δειξετε οτι η f ειναι 1-1.
ιι)να δειξετε οτι η g(f(x))=g(x) για καθε χ ε R.
ιιι)να βρειτε τη συναρτηση f.
2)εστω συναρτησεις f,g: [LATEX]R\rightarrow R[/LATEX] που η f ειναι γνησιως αυξουσα και η g γνησιως φθινουσα.
ι)να δειξετε οτι η fog ειναι γνησιως φθινουσα
ιι)να λυσετε την αvισωση f(g(e^x-x))<f(g(1-x))
υ.γ.στη 1η εχω αποδειξει το πρωτο ερωτημα τα αλλα δυο ερωτηματα δεν μπορω να καταλαβω πως θα τα βρω..
στη 2η ασκηση εχω αποδεξει το πρωτο ερωτημα ,στο δευτερο ερωτημα εχω καταλαβει τι πρεπει να κανω αλλα δεν ξερω αν ο τροπος γραφης και λυσης μου ειναι σωστος....λοιπον ειπα: fog(e^x-x)<fog(1-x)
(e^x-x)>(1-x) (αλλαζω φορα διοτι η fog ειναι γνησιως φθινουσα)
e^x-x>1-x
e^x-x-1+x>0
e^x-1>0
e^x>1
lne^x>ln1
x>0
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
OChemist
Πολύ δραστήριο μέλος


Στη 1η ασκηση στο δευτερο ερωτημα απλως θεσε οπου x το f(x) στην g(x) και μεσω της δοθεισας θα προκυψει.Ενω στο τριτο ερωτημα χρησιμοποιησε οτι εχεις αποδειξει...καθως επισης οτι η f(x) ειναι "1-1".Code:1)Εστω η συναρτηση f : [LATEX]R\rightarrow R[/LATEX]για την οποια ισχυει f(f(x))=x,για καθε χ ε R και η συναρτηση g(x)=x+f(x),για καθε χ ε R που ειναι 1-1. ι)να δειξετε οτι η f ειναι 1-1. ιι)να δειξετε οτι η g(f(x))=g(x) για καθε χ ε R. ιιι)να βρειτε τη συναρτηση f. 2)εστω συναρτησεις f,g: [LATEX]R\rightarrow R[/LATEX] που η f ειναι γνησιως αυξουσα και η g γνησιως φθινουσα. ι)να δειξετε οτι η fog ειναι γνησιως φθινουσα ιι)να λυσετε την αvισωση f(g(e^x-x))<f(g(1-x))
υ.γ.στη 1η εχω αποδειξει το πρωτο ερωτημα τα αλλα δυο ερωτηματα δεν μπορω να καταλαβω πως θα τα βρω..
στη 2η ασκηση εχω αποδεξει το πρωτο ερωτημα ,στο δευτερο ερωτημα εχω καταλαβει τι πρεπει να κανω αλλα δεν ξερω αν ο τροπος γραφης και λυσης μου ειναι σωστος....λοιπον ειπα: fog(e^x-x)<fog(1-x)
(e^x-x)>(1-x) (αλλαζω φορα διοτι η fog ειναι γνησιως φθινουσα)
e^x-x>1-x
e^x-x-1+x>0
e^x-1>0
e^x>1
lne^x>ln1
x>0
Στη δευτερη ασκηση εκει εχεις χασει την φορα της ανισωσης η f ειναι αυξουσα (αρα γιατι αλλαξες φορα) ενω η g ειναι φθινουσα (αρα τοτε επρεπε να αλλαξεις φορα), ξανα κοιτα το.Αλλιως ο τροπος σου ειναι ολοσωστος!!!


Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


Να αποδειξεται ότι:
α) αν Im(z)=0, τότε α=1
β) αν α=0, τότε
γ) για τον πραγματικό αριθμό α ισχύει
Όπου
Τα α, β τα έχω αποδείξει θα ήθελα κάποιος να μου πεί τι να κάνω για το γ.

Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ξαροπ
Πολύ δραστήριο μέλος


Άρα
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


Υποθέτω ότι έχεις ήδη κάνει τις γνωστές αντικαταστάσεις (άθροισμα συζυγών ίσο με το διπλάσιο πραγματικό μέρος του μιγαδικού κ.ο.κ.), από την αρχική σχέση εξίσωσης των μιγαδικών βλέπεις ότι το πραγματικό και φανταστικό μέρος του μιγαδικού στα αριστερά είναι μη αρνητικά (ως τετράγωνα πραγματικών).
Άρα
ΥΓ. Είμαστε στο φόρουμ Β' Λυκείου...καλύτερα να μεταφερθούμε στο αντίστοιχο της Γ' Λυκείου
Έχω βγάλει


Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Mr.Blonde
Πολύ δραστήριο μέλος


Απο αυτα προκυπτει ευκολα το ζητουμενο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


2)
3)
4)
5)
6)
7)
8 )
να βρουμε την μονοτονια ζηταει ευκολα ειναι απλως δεν θυμαμαι πως βρισκουμε την μονοτονια
αν μπορει καποιος να μου λυσει μια απο αυτες για να θυμιθω πως λυνονται
και αν θελει να μου δωσει ΜΟΝΟ τις απαντησεις για την καθε μια για να δω αν θ α τα βγαλω σωστα
ευχαριστω
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


Τις απαντήσεις των υπόλοιπων θα τα βάλω αργότερα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Aris90
Εκκολαπτόμενο μέλος


γιατι αλλαζεις φορα?
![]()
Τις απαντήσεις των υπόλοιπων θα τα βάλω αργότερα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
JKaradakov
Τιμώμενο Μέλος


γιατι αλλαζεις φορα?

Εδώ και οι απαντήσεις των υπόλοιπων:
2) Αύξουσα
3) (0,+ άπειρο) --> Αύξουσα
(-άπειρο,0] ---> Φθίνουσα
4) (0,+ άπειρο) --> Φθίνουσα
(-άπειρο,0] ---> Αύξουσα
5) (0,+ άπειρο) --> δεν έχει σταθερή μονοτονία
(-άπειρο,0] ---> Φθίνουσα
6) Φθίνουσα
7) Δεν ξέρω
8) Φθίνουσα
Ας τα δεί και κάποιος άλλος να πεί αν είναι σωστά.
Σημείωση: Το μήνυμα αυτό γράφτηκε 12 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 8 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 227 μέλη διάβασαν αυτό το θέμα:
- hristosdab
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- Vasilina93
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.